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Abstract

This thesis is devoted to the mathematical analysis of atomistic modelling of fracture

in a crystalline solid. In particular, we focus on a single Mode III crack defect in an

infinite two-dimensional square lattice under anti-plane displacements and nearest-

neighbour interactions, show that the associated lattice equilibration problem is

well-defined over a suitable function space and discuss different regimes of the key

parameter known as the (rescaled) stress intensity factor k ≥ 0, which in continuum

fracture mechanics characterises the strength of the stress singularity at the crack

tip and more broadly acts as a loading parameter on the crack.

In the first part of the work, we focus on the small-loading regime with k

sufficiently small and, under the assumption that interactions across the crack are

disregarded, prove existence, local uniqueness and stability of atomistic solutions

and further establish their qualitatively sharp far-field decay estimates.

The latter result requires establishing existence and decay estimates for the

corresponding lattice Green’s function in the anti-plane crack geometry, which con-

stitutes the main technical result of the thesis.

In the final part, we go beyond the small-loading regime and focus on cap-

turing crack propagation in a quasi-static analysis aided by bifurcation theory. We

provide evidence that k is a natural bifurcation parameter and that the resulting bi-

furcation diagram is a periodic “snaking curve”. Subsequently we investigate cell size

effects in a finite-cell approximation to the infinite problem by proving sharp con-

vergence rates and obtaining a superconvergence result for critical values of k. This

enables us to capture the phenomenon of lattice trapping and how it is significantly

influenced by the computational domain size.
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Chapter 1

Introduction

A crystal is a solid material characterised by a periodic arrangement of its atoms
known as a lattice. Such an exactly repeating pattern is prone to being broken by a
variety of irregularities, known as defects, which can drastically alter the mechanical,
electrical and chemical properties of the underlying material [69]. Typical crystalline
defects include point defects, affecting e.g. conductivity of the material [55]; disloca-
tions, known as carriers of plastic, irreversible, deformations [48]; as well as cracks,
whose propagation facilitates the process of failure known as fracture [21].

The general aim of static modelling of defects at an atomistic scale is to find
an equilibrium configuration of atoms which contains a given defect. This can be
achieved via a variational approach, in which such an equilibrium corresponds to a
critical point of an associated energy. Our interest lies in first applying this principle
to the case of fracture, which in itself presents a number of challenges, and then
consider a related quasi-static problem of crack propagation.

The energy in the variational approach is constructed by taking into account
interactions between atoms. This procedure is particularly subtle in the case of a
crack, which in its essence concerns a situation where, following a successive loss
of an interaction bond between neighbouring atoms in a crystal, a sharp cut in
the material is formed. This process is inherently discrete in nature, hence the
modelling of fracture at an atomistic scale holds key to the full understanding of this
phenomenon.

Due to the obvious length-scale limitations of an atomistic setup, the classical
treatment of this problem, however, employs a continuum approach. Its origins can
be traced back to a classic paper by Griffith [44], in which a condition for crack
extension, known as Griffith’s criterion, is derived from the fundamental energy
theorems of thermodynamics and mechanics. It postulates existence of some critical
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value kG of the loading parameter known as stress intensity factor (SIF), k, beyond
which it is energetically feasible for a crack to propagate. The universal insights of
this pioneering work gave rise to the well-established theory of fracture mechanics
[58], which draws heavily from the more general theory of continuum elasticity [56].
In the more recent mathematical literature, several models generalising the Griffith
theory have been proposed [30, 31, 38].

The principal motivation for our work stems from the following limitation
of the continuum approaches: Consider a domain D ⊂ R2, representing a cross-
section of a three-dimensional elastic body, with a crack set ΓD ⊂ D. Given a
material-specific strain energy density function W : R2×k → R ∪ {+∞} (where
k ∈ {1, 2, 3} depending on the loading mode), c.f. [56], one can hope to find a non-
trivial equilibrium displacement u : D → Rk accommodating the presence of a crack
by minimising the continuum energy given by

E(u) :=

∫
D\ΓD

W (∇u) dx,

over a suitable function space. In line with continuum linerised elasticity (CLE), one
can approximate W by its expansion around zero to second order and obtain the
associated equilibrium equation

−div (C : ∇u) = 0 in D \ ΓD, (1.0.1)

(C : ∇u) ν = 0 on ΓD, (1.0.2)

supplied with a suitable boundary condition coupling to the bulk [39]. Here C is the
elasticity tensor with entries Cjβiα := ∂iαjβW (0).

It is well-known that regardless of the details of the geometry of D and ΓD,
near the crack tip, the gradients of solutions to (1.0.1)-(1.0.2) exhibit a persistent
1/
√
r behaviour, where r is the distance from the crack tip, c.f. [71]. The singularity

at the crack tip implies the failure of CLE to accurately describe a small region
around it where atomistic (nonlinear and discrete) effects dominate. This near-tip
nonlinear zone is argued to exhibit autonomy [21, 39], meaning that the state of
the system in the vicinity of the singular field is determined uniquely by the stress
intensity factor k, and therefore systems with the same SIF but different geometries
will behave similarly within the near-tip nonlinear zone.

In order to better understand the microscopic features of this zone, we may
exploit the spatial invariance of elasticity and zoom in on the region near the crack tip
by performing a spatial rescaling Ru(x/R), which leads to a simplified geometry of
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an infinite domain with a half-infinite straight crack line, as illustrated in Figure 1.1.
As we increase the spatial rescaling parameter R we eventually approach the atomic

Figure 1.1: A schematic illustration of the setup. A domain D with the crack set
ΓD = Γ1 ∪ Γ2. The autonomy of the crack implies we can zoom in on each crack tip
to obtain a simplified geometry of a ball of radius R. In the limit R → ∞ of the
spatial rescaling we obtain a domain R2 and a half-infinite crack Γ0.

length-scale at which the hypothesis that the material behaves as a continuum breaks
down.

Furthermore, several atomistic studies of fracture revealed phenomena not
accounted for in the continuum description. In [24] it has been demonstrated that
crack propagation can only occur in certain directions compatible with the crystalline
arrangement of atoms. In their seminal paper, Thomson et.al. [82] introduced a
simple fracture model exhibiting a phenomenon known as lattice trapping in which
the lattice keeps the crack trapped until the stress intensity factor reaches some k+

larger than kG, thus violating Griffith’s criterion. This clearly indicates that it is
the near-crack-tip zone in which continuum descriptions fail that drives the process
of fracture and cannot be disregarded.

In the particular case of a brittle material, in which failure occurs with lit-
tle prior plastic deformation, fracture processes are key to determining macroscale
physical properties of a material. The inherently discrete nature of fracture and the
briefly described failure of continuum approaches render the task of creating accurate
and efficient simulations of this phenomenon on a large scale particularly difficult [8].
Many of the simulation techniques in operation today rely on simplifying assump-
tions which are often phenomenological; for example, it is generally unclear under
which conditions the standard continuum models of fracture mechanics become in-
valid, which in practise leads to overly conservative safety measures in engineering
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designs [43].

1.1 Recent mathematical results

In the last 25 years, there has been a wealth of interest within the mathematical
community devoted to the modelling and analysis of crystalline materials and their
defects on an atomistic scale and how it relates to the classical continuum approaches.
Our ensuing study of atomistic fracture draws heavily from these efforts and thus
in what follows we give a brief account of how this rather versatile research field
developed over time, highlight different techniques and approaches employed and
discuss the appropriate key results that paved the way for our study.

1.1.1 Atomistic approaches to elasticity and their connection to
the continuum counterparts

The key early approach employed in a series of papers starting with [13] centred
around the idea of postulating a simple, often one-dimensional model of N equis-
paced particles interacting via a (nearest-neighbour) pair-potential and employing
the framework of Γ-convergence [29] to recover the corresponding continuum integral
functional as N →∞ and thus justifying the continuum theory as an approximation.
This approach was subsequently generalised with the help of a broad compactness
result in [2], which the authors applied to characterise a class of Γ-limits of dis-
crete energies defined on n-dimensional cubic lattices under pair-interactions with
suitable growth and decay assumptions. In this framework, however, the compu-
tation of the limiting integral representation is highly non-trivial for cases beyond
nearest-neighbour interactions and involves macroscopic homogenisation [10, 64] and
relaxation [12].

The further difficulty when working with models beyond nearest-neighbour
interactions was laid bare in the pioneering work of Friesecke and Theil [40], who
considered a simple two-dimensional linear mass spring model and in particular
showed that the inclusion of second-nearest-neighbour interactions creates a nonlin-
earity of universal geometric nature, which in certain cases can lead to the failure of
the so-called Cauchy–Born (CB) rule, which is considered the classical link between
atomistic and continuum descriptions.

The study of the validity of the Cauchy–Born rule has been another area
of research aimed at understanding connections between atomistic and continuum
descriptions. The CB rule, as discussed in [36], or more recently in in a review paper
[35] can be summarised in laymen terms as follows: each atom in a deformed material
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follows the macroscopic deformation gradient and thus the continuum stored energy
function associated to an affine deformation is given by the energy (per unit volume)
of a crystal deformed by the same mapping. This has been verified as theorem by
Friesecke and Theil in [40] for their model in the small strain regime, but also shown
to fail for large displacements as well as for certain not physically feasible choices of
interaction parameters. The validity of the CB rule in the small strain regime was
later generalised to arbitrary dimensions in [28]. These results were combined in [17]
with the aforementioned Γ-convergence methods to further generalise [2] to full finite
range many body interatomic potentials and show that in the small strain regime
the limiting energy is consistent with the CB rule. Since in our study we make use
of the theory of continuum linearised elasticity (CLE) - classically understood to be
applicable in the small-strain regime - we further note that it was shown in [15] and
subsequently generalised in [76] that one can derive CLE functionals directly from
nonlinear discrete models.

In a separate effort motivated by the fact that the machinery of Γ-convergence
requires insight into the global energy minimisation and is thus inherently incompat-
ible with realistic interatomic potentials such as the Lennard-Jones potential, E and
Ming in [32] introduced a different approach. They show that, under suitable stabil-
ity assumptions, closely related to the fact that elastic deformations are only local
minimisers of the energy, solutions of certain equations of continuum elasticity are
asymptotically approximated by corresponding atomistic equilibrium configurations.
In particular, they further discuss that the CB rule holds true for elastically deformed
crystals as long as the right unit cell is used in formulating the rule. This approach
has been generalised to a large class of interatomic potentials in [68] for a simplified
geometry.

1.1.2 Atomistic modelling of point defects and dislocations

The body of work discussed in Section 1.1.1, together with [5], in which authors intro-
duce a framework allowing for a rigorous description of dislocations in an atomistic
setting, paved the way for the atomistic study of defects (in particular dislocations)
and its even more intricate relation to continuum theories.

The work of Ponsiglione in [70] exploited the machinery of Γ-convergence to
obtain the first atomistic-to-continuum results for a simple anti-plane model of screw
dislocations as the lattice spacing becomes arbitrarily small. This has been extended
in [3] by characterising higher order terms in the asymptotic expansion as well as
discussing the associated dislocation dynamics.

The key framework particularly suited for the atomistic study of both point
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defects and straight dislocations has been introduced in [34]. In their seminal con-
tribution, Ortner et. al. showed that the decomposition of the atomistic equilibrium
u = û + ū into a far-field predictor û, and a core corrector ū can be exploited to
gain quantitative insight into the locality of atomistic effects and to further prove
rigorous error estimates for finite-domain numerical simulation techniques. The far-
field predictor û is chosen so that it both enforces the presence of the defect by
specifying a suitable boundary condition at infinity and also ensures that the core
corrections have finite energy norm. In particular, it is shown that by coupling
atomistic and continuum descriptions through the CB rule, the resultant continuum
linearised elasticity equation provides such a predictor. In this regard [34] employs
the already-mentioned view advanced by E and Ming in [32] that elastic deforma-
tions are local minimisers of the energy and hence disregard questions of existence
of solutions and simply assume that the existence of a solution with suitable sta-
bility property is an inherent feature of the lattice and the interatomic potential.
The predictor-corrector approach has also been employed in the preceding study of
a model for an anti-plane screw dislocation in [50].

The particular advantage of this approach is that it allows to quantify the
strength of atomistic effects by rigorously establishing that, in the case of a straight
dislocation, |Dû(x)| ∼ |x|−1, while |Dū(x)| ≤ C|x|−2 log |x|, where D denotes the
discrete gradient operator. The faster decay of ū encodes the locality of the defect
core relative to the far-field and can be used to prove convergence rates for finite-
domain approximations, thus allowing for a rigorous numerical analysis of various
multi-scale simulation techniques such as [9, 26, 53, 61, 62, 63, 77, 79].

We further note that the theme of locality of defects was subsequently ad-
vanced in [19], in which authors introduced and developed techniques to substan-
tially improve the locality of core corrections by prescribing a more accurate far-field
predictor. This particular idea proves useful in the context of studying atomistic
fracture and is discussed in Chapter 3 in Section 3.6.

For completeness, we conclude by mentioning that this approach was ex-
tended to point defects in multilattices in [65] and was also studied in depth in
particular case of anti-plane screw dislocations in [50] - a setup which bears a signif-
icant resemblance to the anti-plane model of fracture to be introduced in Chapter 2.

1.1.3 Previous approaches to atomistic fracture

Throughout the development of many of the mathematical tools described in this
literature review, many of the studies were directly related to fracture and thus
we would like to single them out as particular relevant to our study. Already in
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the pioneering work of Braides et. al. in [13] the focus was on the phenomena of
cleavage fracture, which refers to the tendency of crystalline materials to split along
crystal planes. While in the present work we consider a more complex mechanism
of fracture, it is worth pointing to the related earlier work by Truskinovsky [83],
which to the best of our knowledge is the first article discussing atomistic fracture
as a bifurcation phenomenon. An example of a more involved model in the same
framework of simple one-dimensional atomistic models is discussed in [14], where
the authors consider a general class of suitable interatomic potentials and show that
in certain scaling regimes in the Γ-limit some Griffith-type fracture energy can be
recovered. Similarly, in [11] authors consider in detail the case of next-to-nearest-
neighbour interactions and through a careful consideration of higher-order terms, the
authors are able to obtain a localisation result for fracture under the Lennard–Jones
potential.

Of particular relevance to the ensuing study of atomistic fracture are the
works of Li [59, 60], in which the tools from bifurcation theory in Banach spaces
[27] are used to numerically capture crack propagation, which is shown to follow a
snaking curve, as will be discussed in Chapter 5 in more detail.

1.2 Main results of the thesis

The primary aim of this work is to lay foundations for a robust mathematical theory
of crack propagation at an atomistic scale, which would provide a rigorous grounding
for a subsequent study of bottom-up multiscale and coarse-grained models, which
are key to bridging the gap between length-scale limitations of purely atomistic
approaches and deficiencies of a purely continuum consideration.

As mentioned in Section 1.1.2, a general approach to describe a single lo-
calised defect embedded in a homogeneous host crystal has recently been rigorously
formalised in [19, 34, 50, 65] for point defects and straight dislocations. This frame-
work, however, has so far explicitly excluded cracks due to two challenges that do
not arise for point defects and dislocations. Firstly, as is already evident when com-
paring continuum linear elasticity approaches to modelling screw dislocations [48]
and cracks [58], the latter involves a slower rate of decay of strain away from the
defect core, which makes it more difficult to prove that the corresponding atomistic
model is even well-defined.

Furthermore, in order to employ an atomistic model in the presence of a
crack, one has to consider a domain that is both discrete and inhomogeneous, since
the crack breaks translational symmetry even locally. A particularly limiting conse-
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quence of this is that before one can establish results about regularity of the resulting
discrete elastic fields, one first has to prove the existence and decay properties of a
lattice Green’s function, G, in the crack geometry. While the cases of point defects
and dislocations permit a spatially homogeneous setup of the reference configura-
tion, allowing us to obtain the lattice Green’s function via the semi-discrete Fourier
transform, this approach breaks down in the presence of a crack.

(a)

++++++

- - - - - -

(b)

Figure 1.2: The geometry of the problem with and without the crack present.

1.2.1 Chapter 2

Chapter 2 introduces the general framework, which can be summarised as follows.
To simplify the presentation, we restrict the analysis to a mode III fracture on a
two-dimensional square lattice Λ := Z2 − (1/2, 1/2) with anti-plane displacements
u : Λ → R. In what follows we always consider an energy difference functional of
the form

E(u, k) =
∑
m∈Λ

V
(
Dûk(m) +Du(m)

)
− V

(
Dûk(m)

)
. (1.2.1)

Here D denotes the discrete gradient operator, encoding deformed distances between
neighbouring lattice sites. Depending on the context, it will be defined in two ways
- either with interactions across the crack disregarded or included. This will be
discussed in Section 2.1 and is shown in Figure 1.2. Furthermore, V is a suitable
Cα interatomic site potential with for α ≥ 5, as discussed Section 2.3. Finally, with
details presented in Section 2.4, the function ûk : Λ → R is the CLE solution to
(1.0.1)-(1.0.2) in the anti-plane setup with zero Neumann boundary condition on
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the crack and is given in polar coordinates x = (r cos θ, r sin θ) by

ûk(x) := k
√
r sin (θ/2) . (1.2.2)

The prefactor k is the (rescaled) stress intensity factor, which we can vary and is
conventionally set, without loss of generality, to be nonnegative. The function u is
an atomistic correction, thus the total displacement is given by ûk +u. The rigorous
details of discrete kinematics and the model are presented in Chapter 2.

1.2.2 Chapter 3

In Chapter 3 we formulate the equilibration problem on a lattice in the presence of a
crack as a well-defined variational problem on an appropriate discrete Sobolev space
Ḣ1.

Theorem 1. Let the discrete gradient operator D be such that it excludes interactions
across the crack. For a fixed k, the energy difference functional E(· ; k) in (1.2.1) is
well-defined on Ḣ1 and α-times continuously differentiable.

We further establish existence, local uniqueness and stability of equilibrium
displacements for small loading parameters.

Theorem 2. Let the discrete gradient operator D be such that it excludes interac-
tions across the crack. For a fixed stress intensity factor k sufficiently small, there
exists a locally unique minimiser ū ∈ Ḣ1 of E(· ; k) defined in (1.2.1) that depends
continuously on ε and, under suitable assumptions on V , satisfies strong stability,
that is there exists λ > 0 such that for all v ∈ Ḣ1

δ2E(ū ; k)[v, v] ≥ λ‖v‖2Ḣ1 .

Crucially, we also prove qualitatively sharp far-field decay estimates of the
atomistic core contribution to the equilibrium fields in order to quantify the “range”
of atomistic effects.

Theorem 3. For any k ∈ R fixed, every critical point ū ∈ Ḣ1 of the energy difference
functional E(· ; k) in (1.2.1) satisfies

|Dū(l)| . k|l|−3/2+δ, (1.2.3)

for any δ > 0 and l ∈ Λ with |l| large enough.
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1.2.3 Chapter 4

The regularity result (1.2.3) requires a careful characterisation of the lattice Green’s
function in the crack geometry, which is schematically shown in Figure 1.3 and which
we define as follows.

Figure 1.3: A schematic representation of the lattice Green’s function in the crack
geometry with a point-source s at the centre of the dark blue bonds.

Definition 4. Let the discrete gradient operator D be such that it excludes inter-
actions across the crack and define the Hessian operator H as a discrete divergence
of D. A function G : Λ × Λ → R is said to be a lattice Green’s function G for the
anti-plane crack geometry if for all m, s ∈ Λ,

HG(m, s) = δms

G(m, s) = G(s,m),

where δms denotes the Kronecker delta and H is the Hessian operator applied with
respect to first variable.

We note that in our setup the more general notion of the Hessian operator
H coincides with the notion of a discrete Laplacian, however in more general setups
it is not necessarily the case. This is highlighted in Chapter 4 in (4.1.2).
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Chapter 4 is devoted the study of G. We overcome the problem of inhomo-
geneity of the domain and are able to prove existence and decay estimates for G. The
approach employed is centred around the observation that the problem of finding G
can itself be cast as an instance of coupling between continuum and atomistic de-
scriptions, as we prescribe the explicit continuum Green’s function G as a boundary
condition. This construction ensures the existence of G and is then followed by a
technically involved argument establishing the decay properties of G.

Theorem 5. There exists a lattice Green’s function G : Λ × Λ → R such that, for
any δ > 0,

|D1D2G(l, s)| . (1 + |ω(l)||ω(s)||ω(l)− ω(s)|2−δ)−1,

where D1 (respectively D2) is the discrete gradient operator with respect to first (resp.
second) variable and ω is the suitably defined complex square root mapping, which
will be introduced in Section 2.4.

1.2.4 Chapter 5

In order to capture crack propagation at an atomistic scale, one has to go beyond
the small-loading regime of Chapter 3. In Chapter 5, we do this by introducing
an extended framework in which atomistic crack propagation can be captured by
tracing a continuous curve of critical points of the energy difference introduced in
(1.2.1). The mathematical tools we exploit to do so are taken from bifurcation
theory in Banach spaces [27]. While this idea has already been explored numerically
in [59, 60], a key new conceptual insight is that the stress intensity factor k, which
acts as a measure of stability in continuum fracture can be interpreted as the “loading
parameter” on the atomistic crack through the far-field boundary condition allowing
us to obtain rigorous results about cell size effects.

More specifically, it is clear from (1.2.1) that the SIF enters the model as a
scaling parameter multiplying the CLE solution, and so varying it naturally leads to
a bifurcation diagram. Moreover, the fact that the CLE crack equilibrium displace-
ment does not belong to the energy space Ḣ1 suggests that the bifurcation diagram
consists solely of regular points and quadratic fold points, at which the equilibria
found transition from being linearly stable to linearly unstable (or vice versa).

This observation and the numerical evidence we obtain together motivate
structural assumptions on the bifurcation diagram: we assume (and confirm nu-
merically) that it is a ‘snaking curve’ [80] with the stability of solutions changing
at each bifurcation point. In particular, under our assumptions, a jump from one
stable segment to another captures the propagation of the crack through one lattice
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cell, with the unstable segment that is crossed in that jump being the collection of
corresponding saddle points, which represent the energetic barrier which must be
overcome for crack propagation to occur at a given value of the SIF. This allows us
to capture the phenomenon of lattice trapping [45, 82], which in this context refers
to the idea that in discrete models of fracture there can exist a range of values of SIF
for which the crack remains locally stable despite being above or below the critical
Griffith stress.

The notable difference in the models considered in Chapters 3 & 5 is that
in Chapter 3, in order to prove that the variational problem is well-posed, the in-
teractions crossing the crack were explicitly removed by a suitable definition of the
discrete gradient D; by contrast, in Chapter 5 we modify D so that they are included
in the interaction range, and instead, the fact that they are effectively broken is en-
coded in the interatomic potential and in the strain. This gives rise to a physically
realistic periodic bifurcation diagram, for which we subsequently prove regularity
results both in terms of its smoothness as a submanifold of an appropriate space, as
well as uniform spatial regularity of the equilibria along the corresponding solution
path. These results can be considered as analogues of Theorems 1 & 3. In contrast,
the corresponding result equivalent to Theorem 2 has to be assumed.

Our results for the infinite lattice model naturally lead to an investigation of
the numerical approximation of these solutions on a finite-domain. In Chapter 3 we
develop the technical tools to establish sharp convergence rates as the domain radius
tends to infinity and subsequently use them in Chapter 5 with the notable novelty
that there the results apply uniformly to finite segments of the bifurcation diagram.

Theorem 6. Let the discrete gradient operator be such that it includes the in-
teractions across the crack and R denote the radius of a computational domain
ΛR := Λ ∩ BR(0). For any β > 0 there exists R0 large enough such that for all
R > R0, there exists an approximate bifurcation path {(ūRs , k̄Rs ) ∈ Ḣ1 × R+}, where
ūRs : Λ→ R with ūRs (m) = 0 for m 6∈ ΛR such that

‖ūRs − ūs‖Ḣ1 +
∣∣k̄Rs − k̄s∣∣ . R−1/2+β (1.2.4)

and ∣∣E(ūRs , k̄
R
s )− E(ūs, k̄s)

∣∣ . R−1+β, (1.2.5)

where s denotes the arc-length parameter.

Moreover, in Chapter 5 we establish a superconvergence result for the critical
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values of the SIF at which fold point bifurcations occur with estimates of the form

∣∣k̄RbR − k̄b∣∣ . R−1+β for any β > 0. (1.2.6)

Since the unstable segments of bifurcation diagram correspond to index–1 saddle
points of the energy, our work in this regard also extends the convergence results
of [16] for saddle point configurations of point defects and suggests possible future
extensions to a full transition state analysis [6, 18, 37, 46, 84].
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Chapter 2

The atomistic model of anti-plane
fracture

In this chapter we introduce the general formulation of the model under considera-
tion. We begin by describing the discrete kinematics, emphasising the subtle role of
the interactions across the crack. Subsequently we discuss the function space setup,
followed by a detailed discussion about the assumptions on the interatomic poten-
tial and how the discrete setup can be coupled with the continuum elasticity via the
Cauchy-Born rule. Finally, we provide a rigorous definition of the atomistic energy
difference introduced in (1.2.1) in the Introduction.

2.1 Discrete kinematics

Let Λ denote the shifted two dimensional square lattice defined by

Λ :=
{
l − (1

2 ,
1
2)
∣∣ l ∈ Z2

}
.

We consider a crack opening along

Γ0 := {(x1, 0) |x1 ≤ 0} (2.1.1)

and distinguish the collection of lattice points directly above and below Γ0. These
are defined as

Γ± :=
{
m = (m1,m2) ∈ Λ

∣∣m1 < 0 and m2 = ±1
2

}
and we refer to Figure 2.1 for a visualisation of the setup. For the purposes of our
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(a)
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(b)

Figure 2.1: The geometry of the problem with and without the bonds across the
crack. The (predicted) crack tip depicted by a red dot. In (b) the crack cut Γ0

from (2.1.1) is shown as a dashed black line and the lattice points on Γ+ and Γ− are
highlighted.

analysis, it is helpful to consider two notions of interaction neighbourhood for lattice
points. First, the nearest neighbour (NN) directions of the homogeneous square
lattice are given by

R = {e1, e2,−e1,−e2} .

Second, in many cases we may wish to modify these interaction neighbourhoods by
disregarding the directions across the crack, as the basic modelling assumption used
in treating a crack is that these bonds are effectively broken. For any m ∈ Λ, we
therefore define

R(m) :=

R for m 6∈ (Γ+ ∪ Γ−),

R \ {∓e2} for m ∈ Γ±.
(2.1.2)

For an anti–plane displacement defined on the lattice u : Λ → R, we define
the finite difference operator as Dρu(x) := u(x+ρ)−u(x) and introduce two notions
of the discrete gradient, denoted by D̃u(m), Du(m) ∈ RR and defined as(

D̃u(m)
)
ρ

:= Dρu(m), (2.1.3a)

(
Du(m)

)
ρ

:=

Dρu(m) if ρ ∈ R(m),

0 if ρ 6∈ R(m).
(2.1.3b)
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Figure 2.2: The visual representation of Du(m) from (2.1.3).

The discrete gradient D̃u therefore corresponds to homogeneous NN interactions,
whereas Du reflects a defective lattice, as when m ∈ Γ±, the components of Du(m)

which correspond to erased lattice directions are always null. A visualisation is
provided in Figure 2.2.

Remark 2.1.1. For future reference, we note that in Chapters 3 & 4 we are only
concerned with the formulation of the model with bonds across the crack disregarded.
In Chapter 5, however, we will shift our attention to the formulation in which they
are included.

2.2 Function space setup

The introduction of the discrete gradient operator D that disregards interactions
across the crack allows us to define the appropriate discrete energy space (discrete
Sobolev space) for handling arbitrarily large differences in the far–field displacements
across the crack,

Ḣ1 :=
{
u : Λ→ R | Du ∈ `2 and u(1

2 ,
1
2) = 0

}
, (2.2.1)

which has associated norm

‖u‖Ḣ1 := ‖Du‖`2 =

(∑
m∈Λ

|Du(m)|2
)1/2

=

∑
m∈Λ

∑
ρ∈R(m)

(Dρu(m))2

1/2
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and inner product

(u, v)Ḣ1 :=
∑
m∈Λ

Du(m) ·Dv(m) =
∑
m∈Λ

∑
ρ∈R(m)

Dρu(m)Dρv(m).

The choice to restrict u(1
2 ,

1
2) = 0 ensures that only one constant displacement lies

in the space, making ‖ · ‖Ḣ1 a norm. This restriction will play a subtle role in the
analysis of the lattice Green’s function in Chapter 4. We stress that it is the ’crack-
aware’ discrete gradient D defined in (2.1.3) that is used to define Ḣ1, emphasising
the fact that arbitrarily large finite differences across the crack are allowed.

For analytical purposes, we also introduce the space of compactly supported
displacements,

Hc := {u : Λ→ R | supp(Du) is compact}. (2.2.2)

Functions in this space will be employed throughout as test functions

2.3 Assumptions on the interatomic potential

Throughout the thesis, we consider an interatomic potential V : RR → R, which is
a material-specific function capturing interactions between atoms. In what follows
we assume it to be a nearest-neighbour pair-potential of the form

V (Du(m)) =
∑
ρ∈R

φ
(
(Du(m))ρ

)
, (2.3.1)

with φ ∈ Cα(R) for α ≥ 5 satisfying φ(0) = 0, φ(−r) = φ(r) and φ′′(0) = 1.
The assumption φ(0) = 0 is made without loss of generality since we may always
replace φ(r) 7→ φ(r)−φ(0) without changing the energy difference. The assumption
φ(−r) = φ(r) is consistent with anti-plane mirror symmetry (see also [19, Section
2.2.] and the relevant discussion in Section 3.6). We note it thus follows that
φ′(0) = φ′′′(0) = 0. Finally φ′′(0) = 1 may be assumed without loss of generality as
long as φ′′(0) > 0 (upon replacing φ(r) 7→ cφ(r)). This latter condition is equivalent
to lattice stability [32, 34, 50], which is satisfied for virtually all bulk materials.

We further note the condition φ(0) = 0 is compatible with the fact that
the ‘crack-aware’ gradient operator D is used to define the space Ḣ1 in (2.2.1).
However, as mentioned in Remark 2.1.1, in Chapter 5 we will consider a setup with
the interactions across the crack included. This raises the issue that for any m ∈ Γ±

and ρ 6∈ R̃(m) crossing the crack surface, we have Dρû(m) ∼ |m|1/2. This will be
shown in (5.5.11). Thus, in order to avoid summation difficulties, we introduce a
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further assumption that the pair-potential satisfies

there exists Rφ > 0 such that φ′(r) = 0 ∀r with |r| ≥ Rφ. (2.3.2)

Such an assumption is sufficient for our purposes and simplifies the exposition, but
can be easily replaced by an appropriate decay property (e.g. exponential or suffi-
ciently fast algebraic decay).

Remark 2.3.1. For future reference, we note that in Chapter 3 we are only concerned
with the setup where bonds across the crack are disregarded, hence (2.3.2) is not
assumed there.

2.4 Cauchy-Born rule and continuum linearised elastic-
ity

With V specified, we invoke the Cauchy-Born rule [32, 68], as already discussed in
Section 1.1.1, and couple the atomistic potential V with its continuum counterpart
W : R2 → R (the so-called Cauchy-Born strain energy function), via W (F ) :=

V ((F · ρ)ρ∈R). Subsequently, we expand W around 0 to second order (compare
with the derivation of (1.0.1)-(1.0.2) in the Introduction) to obtain the resulting
anti-plane CLE equation

−∆û = 0 in R2 \ Γ0, (2.4.1)

∇û · ν = 0 on Γ0 \ {0},

with the boundary condition corresponding to a crack at Γ0. The particularly simple
form of the equation is due to the fact that under the Cauchy-Born coupling we have
δ2W (0) = cId, as explicitly calculated in [19].

This equation has infinitely many solutions with the canonical choice being
the sole solution (up to rescaling) that ensures local integrability near the crack tip
and induces a stress which decays at infinity [78]. This solution can be characterised
via the complex square root mapping ω : R2 → R2. In polar coordinates, x =

(rx cos θx, rx sin θx) ∈ R2 \ Γ0, it is given by

ω(x) = (ω1(x), ω2(x)) =
(√
rx cos

(
θx
2

)
,
√
rx sin

(
θx
2

))
(2.4.2)

and the canonical solution to (2.4.1) is

ûk(x) = k ω2(x). (2.4.3)
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Here k is the (rescaled) stress intensity factor, which in continuum linear elastic
fracture mechanics measures the intensity of the singular field near the crack tip, as
discussed in [78, Chapter 3]. In our case, it acts as a loading parameter. Without
loss of generality we assume k ≥ 0, as

û−k(x) = k
√
rx sin

(
− θx

2

)
= ûk((x1,−x2)).

As per Lemma 3.5.1 below, we further note that |∇j û(x)| . |x|1/2−j for any j ∈ N,
|x| > 0.

Remark 2.4.1. While in the case of an anti-plane screw dislocation the predictor
ûs derived from CLE only just fails to be in the discrete energy space Ḣ1 (namely
Dûs ∈ `2+δ for any δ > 0, as described e.g. in [48]), in the case of a crack it is only
true that Dû ∈ `4+δ. This phenomenon is a key reason why the analysis of a general
crack defect is more involved. In the anti-plane case one way of circumventing it is
to impose the assumption of mirror symmetry, which in our setup is equivalent to
φ′′′(0) = 0, but in a more general setup it is an open problem. We refer to Section
3.6 for an extended discussion.

Remark 2.4.2. In Chapter 3, we disregard interactions across the crack, thus the
(trivial) case k = 0 is included and thus in that chapter we assume k ≥ 0. However,
in order to include interactions across the crack in our model, as will be the case in
Chapter 5, it is necessary to assume that in fact k > 0.

2.5 Definition of energy

Throughout the thesis we consider the energy difference functional E : Ḣ1×R→ R
given by

E(u, k) =
∑
m∈Λ

V
(
Dûk(m) + Du(m)

)
− V

(
Dûk(m)

)
, (2.5.1)

where eitherD = D (in Chapters 3 & 4) orD = D̃ (in Chapter 5). Here V : RR → R
is a suitable interatomic site potential as discussed in Section 2.3, and ûk : Λ → R
is the CLE predictor, introduced in Section 2.4. The function u ∈ Ḣ1 is a core
correction, thus the total displacement is given by y = ûk + u. The renormalisation
in the form of subtracting contributions of the CLE solution is crucial in that it
ensures the resulting variational model is well-defined on a Hilbert space Ḣ1, even
though y 6∈ Ḣ1.
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In what follows, we are interested in characterising the set

S =
{

(u, k) ∈ Ḣ1 × R
∣∣ δuE(u, k) = 0 ∈ (Ḣ1)∗

}
,

where δuE : Ḣ1 × R → (Ḣ1)∗ is the partial Fréchet derivative of E with respect to
u and will be shown in Chapters 3 and 5 to be given by, for any v ∈ Ḣ1,

〈δuE(u, k), v〉 =
∑
m∈Λ

∇V
(
Dûk(m) + Du(m)

)
·Dv(m).

Importantly, any (ū, k̄) ∈ S gives rise to an equilibrium displacement ȳ = ûk̄ + ū.
The premise of this formulation is three-fold. Firstly, by treating u as a

perturbation of û, it seeks to validate CLE as an accurate approximation of the
atomistic effects away from the defect core in a crack defect setup. On the other
hand, it also shows that the CLE solution can serve as an appropriate boundary
condition for finite-domain numerical computation in a discrete setup, as tested in
numerical tests described in Sections 3.4 & 5.4. Finally, the inclusion of the stress
intensity factor k as a variable makes this formulation consistent with the abstract
framework of bifurcation theory on Banach spaces.

Remark 2.5.1. For future reference, we note that in Chapter 3 we are only concerned
with the small loading regime where k is kept fixed and assumed small enough. In
Chapter 5 on the other hand k is varied and is the key to tracing a bifurcation
diagram corresponding to crack propagation.
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Chapter 3

The small loading regime

In this chapter we rigorously formulate the equilibration problem on a lattice in
the presence of the crack for a small enough loading parameter. In particular, we
are concerned with proving Theorem 1, Theorem 2 and Theorem 3, which together
establish that the underlying variational problem is well-defined, that in the small-
loading regime there exists a locally unique stable atomistic equilibrium and that its
far-field decay, i.e. the locality of the core corrector, can be sharply estimated.

3.1 Introduction and notation

Throughout this chapter we consider the energy introduced in Section 2.5, in the
small loading regime, that is when the stress intensity factor k introduced in Sec-
tion 2.4 is sufficiently small and the interactions across the crack are excluded, as
discussed in Section 2.1.

To be precise, we consider the energy difference functional E : Ḣ1 × R→ R
given by

E(u, k) =
∑
m∈Λ

V (Dûk(m) +Du(m))− V (Dûk(m)), (3.1.1)

where ûk was defined in (2.4.3). We recall that D defined in (2.1.3) is the discrete
gradient operator that disregards interactions across the crack, V is the interatomic
potential introduced in (2.3.1) (noting that the additional assumption on the pair-
potential introduced in (2.3.2) is not assumed in this chapter). Subsequently we set
the stress intensity factor k introduced in (2.4.3) to be small enough and in view of
the fact that k is fixed throughout, we resort to a minor abuse of notation

E(u) := E(u ; k) (3.1.2)

21



to simplify presentation.

Outline of the chapter: In Section 3.2 we state the main results rigorously.
In Section 3.3 we consider the finite-domain approximation and prove the small-
loading regime equivalent of the convergence rate in (1.2.4). The numerical tests
are presented in Section 3.4. The discussion about the model is in Section 3.6. We
conclude the treatment of small-loading regime by gathering proofs in Section 3.5.

3.2 Results about the model

Following the theory developed in [19, 34, 50] for point defects and straight disloca-
tions, we formulate the static crack model as a minimisation problem

find ū ∈ arg min
Ḣ1
E , (3.2.1)

with the energy difference functional defined in (3.1.2). We proceed to state the
main results of this chapter.

Theorem 3.2.1. The energy difference functional E in (3.1.2) is well-defined on
Ḣ1 and α-times continuously differentiable. Furthermore, for k sufficiently small,
the minimisation problem (3.2.1) has a locally unique solution ū ∈ Ḣ1 that depends
continuously on k and satisfies strong stability: there exists λ > 0 such that for all
v ∈ Ḣ1

δ2E(ū)[v, v] ≥ λ‖v‖2Ḣ1 . (3.2.2)

For the proof, see Section 3.5.2.

Theorem 3.2.2. For any k ≥ 0, every critical point of the energy difference func-
tional E in (2.5.1) satisfies

|Dū(l)| . k|l|−3/2+δ, (3.2.3)

for any δ > 0 and |l| large enough.

For the proof, see Section 3.5.2. The sharpness of this result is tested numer-
ically in Section 3.4. The appearance of arbitrarily small δ > 0 in (3.2.3) is due to
the way we construct the lattice Green’s function, as will be discussed in Chapter 4
after Theorem 4.2.2.
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3.3 Rate of convergence to the thermodynamic limit

In this section we consider a supercell approximation to (3.2.1) on a finite domain
confined to a ball of radius R and establish the rate of convergence as R→∞.

The setup is similar to the one descibed in [19, 34], that is we consider a
domain BR ∩Λ ⊂ ΩR ⊂ Λ with the boundary condition û on Λ \ΩR and state it as
a Galerkin approximation

find ūR ∈ arg min
H0
R

E , (3.3.1)

where
H0
R := {v : Λ→ R | v = 0 in Λ \ ΩR}.

We now prove that the finite-domain approximate problem has a solution and how
it relates to the solution of the infinite problem.

Theorem 3.3.1. If ū is a solution to (3.2.1) that is strongly stable in the sense of
(3.2.2), then for all β > 0, there exist C,R0 > 0 such that for all R > R0, there
exists a stable solution ūR to (3.3.1) satisfying

‖ūR − ū‖Ḣ1 ≤ CR−1/2+β.

The proof of the statement follows almost immediately from the correspond-
ing result in [33, Theorem 3.8], as long as we extend the discrete Poincaré inequality
described therein to the domain with a crack. This requires a construction of a
suitable interpolation operator that correctly takes into account the region between
Γ0 and Γ+ ∪ Γ−. This construction shall be carried out as part of the proof of The-
orem 3.2.1. For the sake of completeness we present a detailed proof of Theorem
3.3.1 in Section 3.5.3.

3.4 Numerical results

In this section we present results of numerical tests that confirm the rate of decay of
|Dū| established in Theorem 3.2.2 and the convergence rate from Theorem 3.3.1. The
setup precisely follows the one described in [19, Section 3], with the pair-potential
employed given by

φ(r) =
1

6

(
1− exp(−3r2)

)
.

Theorem 3.2.2 suggests that |Dū(x)| . |x|−3/2, while Theorem 3.3.1 suggests that
in the supercell approximation (3.3.1) we expect ‖ūR − ū‖Ḣ1 ∼ O(R−1/2), where
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R is the size of the domain. To compute equilibria we employ a standard Newton
scheme, terminating at an `∞-residual of 10−8.

In Figure 3.1 we plot the decay of |Dū| rescaled by the value of k used, as
well as the convergence rate to the thermodynamic limit, confirming the predictions
of Theorems 3.2.2 and 3.3.1.

Remark 3.4.1. We also carried out a similar set of tests for the anti-plane crack prob-
lem on a triangular lattice, obtaining qualitatively equivalent results. This indicates
that the current restriction to the square lattice has purely technical origins and that
it is to be expected that it is possible to extend our results to other Bravais lattices.
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Figure 3.1: The decay of the corrector rescaled by the loading parameter, i.e. 1
k |Dū|,

for different values of k. Transparent dots denote data points (|x|, |Du(x)|), solid
curves their envelopes. We observe the expected rate of |x|−3/2 and the linear scal-
ing of Dū is evident. Bottom right: The rate of convergence of the corresponding
supercell approximation. The expected rate R−1/2 is observed.

3.5 Proofs

3.5.1 Additional concepts

In this section we introduce the remaining notation and concepts to be used through-
out that were left out of the introductory section of this chapter.
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Firstly, we define sets

ΩΓ :=
{
x ∈ R2

∣∣x1 ≤ 1
2 and x2 ∈

(
−1

2 ,
1
2

) }
\ Γ0, Γ := ∂ΩΓ \ Γ0, (3.5.1)

with Γ being the line that includes lattice points encompassing Γ0 and, similarly, ΩΓ

being the space that Γ encompasses, except for Γ0 itself.
We further comment on the definition of the gradient operator D in (2.1.3)

and why we set the contribution of a bond across the crack to zero. This formulation
allows us to sum by parts in a convenient way. For instance, for any u, v : Λ → R
with compact support, we have that∑
m∈Λ

∑
ρ∈R(m)

Dρu(m)Dρv(m) =
∑
m∈Λ

Du(m) ·Dv(m) =
∑
m∈Λ

(−DivDu(m)) v(m),

where the discrete divergence operator Div is defined as

Div g(m) := −
∑
ρ∈R

gρ(m− ρ)− gρ(m), for g : Λ→ RR. (3.5.2)

Here we note that RR is a standard short-hand notation for R|R|, where |R| denotes
the number of elements of R, which at the same time introduces ordering with
respect to interaction stencils ρ ∈ R. In our case we have R = {e1,−e1, e2,−e2}, so
|R| = 4, which implies RR is a four-dimensional space and thus if g : Λ→ RR, then
g(m) = (gρ(m))ρ∈R.

In the following it is often of interest to only sum over bonds at the crack
surface. To this end, for any m ∈ Λ and ρ ∈ R(m), we introduce the notation
b(m, ρ) := {m+ tρ | t ∈ [0, 1]} and the following short-hand summation notation∑

b(m,ρ)⊂Γ

≡ ∑
m∈Λ,ρ∈R(m),
b(m,ρ)⊂Γ

together with an analogous definition for bonds not on the crack surface. Likewise,
it is important to distinguish the following sets corresponding to the unit square
centered at the origin

Ω0 := ΩΓ ∩ [−1
2 ,

1
2 ]2, Q0 := Ω0 ∩ Γ. (3.5.3)

We also introduce a shorthand notation related to the complex square root mapping,

ωx := ω(x), ω−xs := ω(x)− ω(s), ω+
xs := ω(x) + ω(s) (3.5.4)
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and quote the following standard result without proof.

Lemma 3.5.1. For j ∈ N, the complex square root map ω defined in (2.4.2) satisfies

|∇jω(x)| . |x|1/2−j .

3.5.2 Proofs for static anti-plane crack model

Proof of Theorem 3.2.1

We separate the proof into two parts, with one devoted to E defined in (3.1.2) and
the other to the solution to (3.2.1).

The energy difference functional E is well-defined and differentiable: For
any v : Λ→ R with compact support we can rewrite the energy difference functional
E as

E(v) = E0(v) + 〈δE(0), v〉, (3.5.5)

where

E0(v) :=
∑
m∈Λ

∑
ρ∈R(m)

(
φ(Dρû(m) +Dρv(m))− φ(Dρû(m))− φ′(Dρû(m))Dρv(m)

)
and

〈δE(0), v〉 =
∑
m∈Λ

∑
ρ∈R(m))

φ′(Dρû(m))Dρv(m).

Since φ ∈ Cα(R) for α ≥ 5, a simple Taylor expansion argument ensures that E0

is well-defined on Ḣ1 (cf. [34]). Thus the proof relies on showing that δE(0) is a
bounded linear functional on Ḣ1, as then (3.5.5) holds for any v ∈ Ḣ1. Noting that
φ′(0) = φ′′′(0) = 0 and φ′′(0) = 1, we Taylor-expand φ′ around zero to get

|〈δE(0), v〉| .
∣∣∣∣∣∑
m∈Λ

Dû(m) ·Dv(m)

∣∣∣∣∣+

∣∣∣∣∣∑
m∈Λ

Rφ(m) ·Dv(m)

∣∣∣∣∣ , (3.5.6)

where Rφ represents the higher-order terms in the Taylor expansion and is given by

(Rφ(m))ρ =
φ(iv)(0)

6
Dρû(m)3 +

φ(v)(ξm)

24
Dρû(m)4,

where ξm ∈ [0, Dρû(m)]. Due to the fact for all m ∈ Λ, |Dû(m)| . |m|−1/2 ≤ C

and the fact that φ ∈ Cα(R) for α ≥ 5, it is immediate that φ(v)(ξm) is bounded
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uniformly and hence
|Rφ(m)| . |m|−3/2 (3.5.7)

and hence ∣∣∣∣∣∑
m∈Λ

Rφ(m) ·Dv(m)

∣∣∣∣∣ . ‖Dv‖`2 .
It remains to estimate the first term of the right-hand side of (3.5.6). To this end we
shall exploit the fact that û solves the equation given by (2.4.1), in particular after
constructing a suitable interpolation operator that takes any lattice function to the
continuum space. Firstly we tessellate the domain R2 \ Γ0 as follows. We carve the
squares in the lattice into two right-angle triangles and introduce a (P1) piecewise
linear interpolation operator I over the resulting triangulation (see Figure 3.2).

In order to exploit the boundary condition that û satisfies (c.f. (2.4.1)), we
also want Iv to be well-defined on ΩΓ and continuous across Γ. Away from the
defect core this is possible by extending it so that it aligns with the the values of
Iv(x) for x ∈ Γ and is constant in the normal direction, as shown in Figure 3.2.
Additionally, near the origin we create two new interpolation points as shown in
Figure 3.2, one at the origin and one in-between points a and d and we denote it
by âd. We define the interpolation there as Iu(0) := 1

4 (u(a) + u(b) + u(c) + u(d))

and lim
x↓âd u(x) = u(d) whereas lim

x↑âd u(x) = u(a), emphasising the fact that the
resulting P1 interpolant does not need to be continuous across Γ0, but is continuous
across the triangle T3.

We can thus write

0 = CΛ

∫
R2\Γ0

(−∆û(x))Iv(x) dx = CΛ

∫
R2\Γ0

∇û(x) · ∇Iv(x) dx,

where in particular the second equality follows from integration by parts and the
boundary term is not there due to the boundary condition in (2.4.1). Hence we in
fact aim to estimate∑
m∈Λ

〈Dû(m), Dv(m)〉 − CΛ

∫
R2\(ΩΓ∪Γ0)

∇û(x) · ∇Iv(x)− CΛ

∫
ΩΓ

∇û(x) · ∇Iv(x).

Remark 3.5.2. The constant CΛ depends on the lattice under consideration. In the
case of the square lattice, CΛ = 2, but for in instance if we were to consider the
triangular lattice with NN interactions, the constant would be 2

√
3. The freedom

of choice is a consequence of the fact that û satisfies Laplace equation with zero
Neumann boundary condition. It also justifies why û is a valid predictor for any
choice of the stress intensity factor k in (2.4.3). This is in contrast with the work in
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(a)

(b)

a b

cd
1 2 345

(c)

Figure 3.2: (a) The tessellation of the domain R2 \ Γ0, with triangles away from
the crack and rectangles at the crack surface. In blue a typical region of integration
associated with a bond.
(b) For some lattice function u : Λ→ R each red dot represents the point in the three
dimensional space corresponding to (l1, l2, u(l)) for some lattice point l ∈ Λ. The
orange region represents the graph of the corresponding interpolant Iu, in particular
clearly illustrating its extension to ΩΓ \ Γ0 (here looking from above).
(c) Near the origin we create two additional interpolation points, one at the origin
and one half-way between lattice points on the crack surface closest to the origin
and impose a triangulation as shown. The resulting P1 interpolation introduces a
collection triangles {T1, . . . , T5} and we stress that Iu is not continuous across the
common edge of T1 and T5.

Chapter 4 on the lattice Green’s function in the anti-plane crack geometry, where in
a corresponding argument, to be discussed in Section 4.3, we have to prescribe the
correct constant in the equation for the corresponding predictor.

The triangulation of R2 \ ΩΓ induced by the P1 interpolation introduces a
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collection of triangles T . Inside any given T ∈ T both components of ∇Iv are
constant and each corresponds to Dρv(l) for some bond b(l, ρ) being an edge of T .
As a result we can write

CΛ

∫
R2\(ΩΓ∪Γ0)

∇û(x) · ∇Iv(x) =
∑
m∈Λ

∑
ρ∈R(m)

(∫
Umρ

∇ρû(x) dx

)
Dρv(m),

where Umρ is the union of triangles for which a given bond b(m, ρ) is an edge (cf.
Figure 3.2). The constant CΛ = 2 disappears due to the fact that the set of lattice
directions under consideration counts each bond twice.

A similar analysis is applicable to the integral over ΩΓ. Away from Ω0 (the
unit square centred at the origin defined in (3.5.3)), it can be tessellated into a
collection of rectangles

(
Qmρ

)
, each associated with one lattice bond b(m, ρ) ⊂ Γ\Q0

(cf. Figure 3.2), where we recall Q0 = Ω0 ∩ Γ. Due to how we construct the
interpolant of v, we can thus conclude that

CΛ

∫
ΩΓ\(Ω0)

∇û(x) · ∇Iv(x) dx =
∑

b(m,ρ)⊂(Γ\Q0)

(∫
Qmρ

∇ρû(x) dx

)
Dρv(m).

It can also be readily checked that (using the notation from Figure 3.2)∫
Ω0

∇û(x, s) · ∇Iv(x)dx = Cb,a(v(b)− v(a)) + Cc,b(v(c)− v(b)) + Cd,c(v(d)− v(c)),

where the coefficients are given by

Cb,a :=
1

2

(
3

∫
T1

∇e1 û+ 2

∫
T2

∇e1 û+

∫
T2

∇e2 û+

∫
T3

∇e1 û+

∫
T4

∇e2 û−
∫
T5

∇e1 û
)
,

(3.5.8)

Cc,b :=
(∫

T1

∇e1 û+

∫
T2

∇e2 û+

∫
T3

∇e2 û+

∫
T4

∇e2 û−
∫
T5

∇e1 û
)
, (3.5.9)

Cd,c :=
1

2

(∫
T1

∇e1 û+

∫
T2

∇e2 û−
∫
T3

∇e1 û− 2

∫
T4

∇e1 û+

∫
T4

∇e2 û− 3

∫
T5

∇e1 û
)
.

(3.5.10)

We note that the directions with respect to which finite differences are taken can be
reversed, thus we also define

Ca,b := −Cb,a, Cb,c = −Cc,b and Cc,d := −Cd,c. (3.5.11)
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We can therefore write

∑
m∈Λ

Dû(m) ·Dv(m) =
∑

b(m,ρ)6⊂Γ

(
Dρû(m)−

∫
Umρ

∇ρû(x) dx

)
Dρv(m)

+
∑

b(m,ρ)⊂(Γ\Q0)

(
Dρû(m)−

∫
Umρ∪Qmρ

∇ρû(x) dx

)
Dρv(m)

+
∑

b(m,ρ)⊂Q0

(Dρû(m)− Cm+ρ,m)Dρv(m),

where the coefficients Cm+ρ,m are given by (3.5.8)-(3.5.11). Since∫
B1(0)\Γ0

|∇û(x)|dx .
∫ 1

0
r1/2dx<∞,

it is clear that for any b(m, ρ) ⊂ Q0, (Dρû(m)− Cm+ρ,m) can be bounded uniformly.
Bearing in mind that Dρû(m) =

∫ 1
0 ∇ρû(m + tρ) dt and observing that for

b(m, ρ) 6⊂ Γ, we have |Umρ| = 1, we exploit the fact that both regions of in-
tegration share the same mid-point. A Taylor expansion around the mid-point
m̂ρ := 1

2 (m+m+ ρ) yields

Dρû(m) =∇ρû(m̂ρ)

∫ 1

0
dt+

∫ 1

0
∇ (∇ρû(m̂ρ)) · (m+ tρ− m̂ρ) dt (3.5.12)

+

∫ 1

0
∇2 (∇ρû(ξ1(m))) [m+ tρ− m̂ρ]

2 dt

and∫
Umρ

∇ρû(x) dx = ∇ρû(m̂ρ)

∫
Umρ

dx (3.5.13)

+

∫ 1

0

∫ 1−t

−t
∇ (∇ρû(m̂ρ)) ·

(
m+ ρ2

(
s

t

)
+ ρ1

(
t

s

)
− m̂ρ

)
ds dt

+

∫
Umρ

∇2 (∇ρû(ξ2(m))) [x− m̂ρ]
2 dx

where ξ1(m), ξ2(m) ∈ R2 depend on m and are such that |m̂ρ − ξi(m)| ≤ 1/2 (the
Lagrange form of the remainder). It can then be explicitly calculated that∫ 1

0
∇ (∇ρû(m̂ρ)) · (m+ tρ− m̂ρ) dt = ∇ (∇ρû(m̂ρ)) · ρ

∫ 1

0
(t− 1/2) dt = 0
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and similarly it can be verified that, for any ρ ∈ R,
∫ 1

0

∫ 1−t

−t
∇ (∇ρû(m̂ρ)) ·

(
m+ ρ2

(
s

t

)
+ ρ1

(
t

s

)
− m̂ρ

)
ds dt = 0.

It thus follows that

b(m, ρ) 6⊂ Γ =⇒
∣∣∣∣∣Dρû(m)−

∫
Umρ

∇ρû(x) dx

∣∣∣∣∣ . |∇3û(m)|.

On the other hand, for b(m, ρ) ⊂ Γ \ Q0 there is only one triangle and thus
|Umρ| = 1

2 , but we also have |Qmρ| = 1
2 . While regions of integration no longer share

a mid-point, we still Taylor-expand and realise that the constant terms in (3.5.12)
and (3.5.13) still cancel one another out, implying that

b(m, ρ) ⊂ Γ \Q0 =⇒
∣∣∣∣∣Dρû(m)−

∫
Umρ∪Qmρ

∇ρû(x) dx

∣∣∣∣∣ . |∇2û(m)|.

Finally, since Lemma 3.5.1 implies that for both j = 2, 3 and m ∈ Λ with m ≈ 0 we
have |∇j û(m)| ∼ O(1) (in particular finite since |m| > 1√

2
as we consider a shifted

lattice), we can incorporate any bond b(m, ρ) ⊂ Q0 into the general conclusion that∣∣∣∣∣∑
m∈Λ

Dû(m) ·Dv(m)

∣∣∣∣∣ . ∑
b(m,ρ)6⊂Γ

|∇3û(m)||Dρv(m)|+
∑

b(m,ρ)⊂Γ

|∇2û(m)||Dρv(m)|

(3.5.14)
and since |∇3û(m)| . |m|−5/2 and |∇2û(m)| . |m|−3/2, then∣∣∣∣∣∑

m∈Λ

Dû(m) ·Dv(m)

∣∣∣∣∣ . ‖Dv‖`2 .
Thus we can conclude that for any v ∈ Ḣ1,

|〈δE(0), v〉| . ‖Dv‖`2 .

The fact that E is at least α-times continuously differentiable then naturally follows
from φ ∈ Cα(R), see [68] for an analogous argument.

This proves the first statement of Theorem 3.2.1.

Existence, local uniqueness, and strong-stability of solutions: We begin by
quoting the Implicit Function Theorem, adapted from [57]:
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Theorem 3.5.3 (Implicit Function Theorem). Let X, Y, Z be Banach spaces. Let
the mapping F : X × Y → Z be continuously Fréchet differentiable with respect
to both x and y. If (x0, y0) ∈ X × Y , F (x0, y0) = 0 and the mapping x 7→
DF (x0, y0)(x, 0) is a Banach space isomorphism from X onto Z, then there exist
neighbourhoods U of x0 and V of y0 and a Fréchet differentiable function g : V → U

such that F (g(y), y) = 0 and F (x, y) = 0 if and only if x = g(y), for all (x, y) ∈
U × V .

In our setting, we have X = Ḣ1, Y = R and Z = (Ḣ1)∗. Interpreting again
the energy difference functional E as defined on Ḣ1 × R we set F := δuE . We
notice that for k = 0 we have a trivial solution ū0 = 0, thus giving us the pair
(ū0, 0) ∈ Ḣ1 × R. We further observe that

〈DF (u0, 0)(v, 0), w〉 = δ2
uE(u0, 0)[v, w] =

∑
m∈Λ

φ′′(0)Dv(m) ·Dw(m)

and since φ′′(0) = 1, the mapping DF (u0, 0)(·, 0) is indeed an isomorphism, as it
is in fact the Riesz map from Riesz Representation Theorem for Hilbert spaces (cf.
[74]).

Hence all the assumptions of the theorem are fulfilled and we can conclude
that in a neighbourhood of (ū, 0) we have a unique solution path of the form
{(u(k), k) | k ∈ [0, kcrit)} with continuous dependence of u on k. The strong-stability
(3.2.2) of solutions for kcrit small enough follows from the fact that it is trivially
satisfied for u0 with λ = φ′′(0) = 1 and the continuous dependence of solutions on
k, as we can always write

〈δ2
uE(u(k), k)v, v〉 = 〈

(
δ2
uE(u(k), k)− δ2

uE(u0, 0)
)
v, v〉+ 〈δ2

uE(u0, 0)v, v〉

and we have

|〈δ2
uE(u(k), k)− δ2

uE(u0, 0)v, v〉| . ‖u(k)− u0‖Ḣ1‖v‖2Ḣ1 . k‖v‖2Ḣ1 .

This concludes the proof of the latter statement of Theorem 3.2.1.

Proof of Theorem 3.2.2

We begin by stating the definition of a lattice Green’s function for an anti-plane
crack geometry.

Definition 3.5.4. A function G : Λ×Λ→ R is said to be a lattice Green’s function
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G for the anti-plane crack geometry if for all m, s ∈ Λ,

HG(m, s) = δms (3.5.15a)

G(m, s) = G(s,m), (3.5.15b)

where δms denotes the Kronecker delta and H := −DivD (recall (3.5.2)) is applied
with respect to the first variable.

It will be shown in Chapter 4 in Theorem 4.2.2 that there exists a function
satisfying this definition and further satisfying, for any δ > 0,

|Dρv(m)| . (1 + |ωm||ωl||ω−ml|2−δ)−1,

where v(m) := G(m, l + τ)− G(m, l) with τ ∈ R(l).
We can thus write that

Dτ ū(l) =
∑
m∈Λ

φ′′(0)Dū(m) ·Dv(m)

=
∑
m∈Λ

∑
ρ∈R(m)

(
φ′(Dρû(m)) + φ′′(0)Dρū(m)

− φ′(Dρû(m) +Dρū(m))
)
Dρv(m)

−
∑
m∈Λ

∑
ρ∈R(m)

φ′(Dρû(m))Dρv(m)

=:
∑
m∈Λ

A(m) ·Dv(m)−B(m) ·Dv(m)

where we exploited the fact that ū is a critical point, that is it satisfies

〈δE(ū), v〉 =
∑
m∈Λ

∑
ρ∈R(m)

φ′(Dρû(m) +Dρū(m))Dρv(m) = 0 ∀v ∈ Ḣ1. (3.5.16)

A Taylor expansion of φ′ around zero, followed by application of the standard Young’s
inequality, yields that

|A(m)| . |Dû(m)|4 + |Dū(m)|2 . |ωm|−4 + |Dū(m)|2,

where we used |∇û(m)| . |m|−1/2 = |ωm|−1. Similarly∣∣∣∣∣∑
m∈Λ

B(m) ·Dv(m)

∣∣∣∣∣ .
∣∣∣∣∣∑
m∈Λ

Dû(m) ·Dv(m)

∣∣∣∣∣+

∣∣∣∣∣∑
m∈Λ

Rφ(m) ·Dv(m)

∣∣∣∣∣ ,
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where Rφ as in (3.5.7). In light of (3.5.14) we thus obtain∣∣∣∣∣∑
m∈Λ

B(m) ·Dv(m)

∣∣∣∣∣ . ∑
m∈Λ

|ωm|−3|Dv(m)|,

which, when put together with the decay of v implies that

|Dτ ū(l)| .
∑
m∈Λ

|ωm|−3(1 + |ωm||ωl||ω−ml|2−δ)−1 (3.5.17)

+
∑
m∈Λ

|Dū(m)|2(1 + |ωm||ωl||ω−ml|2−δ)−1.

The first term on the right-hand side of (3.5.17) can be estimated as follows. We
define ∑

m∈Λ

f(m) :=
∑
m∈Λ

(1 + |ωm|3)−1(1 + |ωm||ωl||ω−ml|2−δ)−1

and observe that away from the sharp spikes at m = l and m = 0 we can bound this
series by the corresponding integral, that is we can say

∑
m∈Λ

f(m) . f(l) + f(0) +

∫
D
fdm,

where D := (R2 \ Γ0) \ (B1(l) ∪B1(0)). Firstly we note that

f(l) = (1 + |ωl|3)−1 and f(0) = (1 + |ωl|3−δ)−1.

For the integral term we introduce a change of variables ξ = ωm, which leads to
ζ := ωl, and dm = |ξ|2dξ. As a result, we have∫

D
f(x)dx =

∫
ω(D)

|ξ|2
(1 + |ξ|3)(1 + |ξ||ζ||ξ − ζ|)2−δ dξ

.
∫
ω(D)
|ζ|−1|ξ|−2|ξ − ζ|−2+δdξ =:

∫
ω(D)

f̃dξ.

Bearing in mind that

ω(D) = R2
+ \ (B1(0) ∪ ω(B1(l))),

we decompose the region of integration into

Ω0 := B |ζ|
2

(0) ∩ ω(D), Ωζ := B |ζ|
2

(ζ) ∩ ω(D) and Ω′ := ω(D) \ (Ω0 ∪ Ωζ)
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and estimate the integral over each region separately as follows:

∫
Ω0

f̃dξ . |ζ|−3+δ

∫ |ζ|
2

1
r−1dr . |ζ|−3+δ log |ζ|,

∫
Ωζ

f̃dξ . |ζ|−3

∫ |ζ|
2

1
|ζ|

r−1+δdr . |ζ|−3+δ+|ζ|−3−δ . |ζ|−3+δ, (3.5.18)

where,in the second integral, 1
|ζ| appears due to the exclusion of B1(l) from D which

translates in the domain of integration to

ξ ∈ Ωζ =⇒ |ξ − ζ| ≥ 1

|ξ + ζ| ≥
1

|ξ|+ |ζ| &
1

|ζ| . (3.5.19)

The last inequality in (3.5.19) follows from |ξ| . |ζ|. The first inequality in (3.5.19),
on the other hand, follows from

1 ≤ |m− l| = |ω−ml||ω+
ml| = |ξ − ζ||ξ + ζ|.

The first equality here is a crucial spatial relation that will be discussed in Chapter
4 in (4.3.1). Finally, ∫

Ω′
f̃dξ . |ζ|−1

∫ ∞
|ζ|

r−3+δdr . |ζ|−3+δ.

Since ζ = ωl, we can thus conclude that∑
m∈Λ

|ωm|−3(1 + |ωm||ωl||ω−ml|2−δ)−1 . |ωl|−3+δ log |ωl| . |ωl|−3+δ̃, (3.5.20)

for any δ̃ > δ.
For the second term on the right-hand side of (3.5.17), we look at three

regions separately: Ω1 := B |l|
2

(0), Ω2 := B |l|
2

(l) and Ω3 := Λ\ (Ω1∪Ω2). We observe
that ∑

m∈Ω1

|Dū(m)|2(1 + |ωm||ωl||ω−ml|2−δ)−1 . |ωl|−3+δ‖Dū‖`2 . |ωl|−3+δ
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Similarly, m ∈ Ω3 =⇒ |ω−ml| & |ωl| and |ωm| & |ωl|, hence∑
m∈Ω3

|Dū(m)|2(1 + |ωm||ωl||ω−ml|2−δ)−1 . |ωl|−4
∑
m∈Ω3

|Dū(m)|2

. |ωl|−4‖Dū‖2`2 . |ωl|−4.

Finally, we can always replace one power of |Dû(m)| with the `∞–norm , thus al-
lowing us to apply the Cauchy-Schwarz inequality to obtain∑

m∈Ω2

|Dū(m)|2(1 + |ωm||ωl||ω−ml|2−δ)−1

. ‖Dū‖`∞(Ω2)‖Dū‖`2(Ω2)

 ∑
m∈Ω2

(1 + |ωm|2|ωl|2|ω−ml|4−2δ)−1

1/2

Noting that the sum is finite and that Ω2 ⊂ Λ\B |l|
2

(0) we combine this with (3.5.20)
to obtain that there exists a constant C > 0 such that for |l| large enough it holds
that

|Dτ ū(l)| ≤ C
(
|ωl|−3+δ̃ + ‖Dū‖`2(Λ\B |l|

2

(0))‖Dū‖`∞(Λ\B |l|
2

(0))

)
.

Subsequently we define w(r) := ‖Dū‖`∞(Λ\Br(0)) and employ a technical result de-
tailed in [33, Lemma 6.3, Step 2] originating from the regularity theory for systems
of elliptic PDEs [42], to conclude that the function

v(r) := r−3/2+δ̄w(r) (3.5.21)

is bounded on R+, where 2δ̄ = δ̃.
To this end, we note that

‖Dū‖`2(Λ\Br(0))≤
1

C
2−3

for r large enough, since ‖Dū‖`2 < ∞ and thus ‖Dū‖`2(Λ\Br(0)) → 0 as r → ∞.
Hence, for l ∈ Λ with |l| > R for some R large enough, it holds that

|Dτ ū(l)| ≤ C|ωl|−3+δ̃ + 2−3‖Dū‖`∞(Λ\B |l|
2

(0)). (3.5.22)

We can take the supremum over all l ∈ Λ with |l| ≥ R of (3.5.22) to deduce

w(r) ≤ Cr−3/2+δ̄ + 2−3w
(r

2

)
(3.5.23)
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for r ≥ R, where 2δ̄ = δ̃. Thus

r3/2−δ̄w(r) ≤ C +
1

2

(r
2

)2
w
(r

2

)
for r ≥ R. If further r

2 ≥ R, then we can apply (3.5.23) to w
(
r
2

)
and we continue to

iterate this argument, that is: if r
2n ≥ R, then

r3/2−δ̄w(r) ≤ C
(

1 +
1

2
+ · · ·+ 1

2n

)
+

1

2n+1

( r

2n+1

)2
w
( r

2n+1

)
.

We now note that the n-term sum in the brackets can be bounded above by 2.
Furthermore, one can always find n ∈ N so that r

2n+1 < R and noting that w is
monotonically decreasing, we thus obtain that w

(
r

2n+1

)
≤ w(R). We can hence

conclude that v defined in (3.5.21) is bounded, since in fact

v(r) . 1 + (2R)2w(R).

This implies that
|Dτ ū(l)| . |ωl|−3+δ̃.

This estimate holds for an arbitrary τ ∈ R(l) and arbitrarily small δ̃ > 0, hence we
have established the result. The linear scaling with k is evident from the fact that in
the interpolation trick used to obtain (3.5.14), the loading parameter can be taken
outside the summation, thus persists linearly.

3.5.3 Proof of convergence

In this section we shall prove Theorem 3.3.1. In the argument we closely follow the
argument in [33, Theorem 3.8]. We begin with the discrete Poincaré inequality on a
domain with the crack.

Lemma 3.5.5. Let 0 < R1 < R2 and set A := Λ ∩ (BR2 \BR1). Then there exists
a constant CP > 0 such that, whenever R2 −R1 ≥ 4 and R1 ≥ 6,

‖u− a‖`2(A) ≤ R2CP ‖Du‖`2(A′) ∀u : A′ → R,

where A′ := Λ ∩ (BR2+3 \BR1−3) and a := −
∫
(BR2

\BR1)\Γ0
Iu dx with I being the P1

interpolation operator introduced in the proof of Theorem 3.2.1 in Section 3.5.2.

Proof. We recall from the proof of Theorem 3.2.1 that the aforementioned interpola-
tion operator I is constructed as a P1 interpolation on a triangulation T of R2 \ΩΓ
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(with the definition of ΩΓ given in (3.5.1)) and then extended to the tessellation of
ΩΓ \ Ω0, with Ω0 defined in (3.5.3) into a collection of rectangles Q.

Let A := (BR2 \BR1) \ Γ0 and

A′ :=

 ⋃
T∈T
T∩A 6=∅

T

 ∪
 ⋃

Q∈Q
Q∩A 6=∅

Q


The fact that R2 − R1 ≥ 4 ensures that for any l ∈ A there exists T ∈ T such that
l ∈ T and T ⊂ A (and hence the same is true for some Q ∈ Q). This implies

‖u− a‖`2(A) ≤ C‖I(u− a)‖L2(A).

We note that despite the exclusion of Γ0, the standard continuum Poincaré inequality
applies to domain A, since it satisfies the cone property [75] and thus

‖u− a‖`2(A) ≤ CR2‖∇u‖L2(A) ≤ CPR2‖∇u‖L2(A′) ≤ R2CP ‖Du‖`2(A′),

where the scaling with R2 in the first inequality is standard and discussed e.g. in
[47] and the final inequality follows from the fact that any triangle T ∈ T such that
T ⊂ A′ and any rectangle Q ∈ Q such that Q ⊂ A′, both have their vertices in
A′.

We also require a result about a suitable truncation operator.

Lemma 3.5.6. There exists a truncation operator TR : Ḣ1 → Hc, where Hc was
defined in (2.2.2), such that, for any u ∈ Ḣ1,

‖DTRu−Du‖`2 . ‖Du‖`2(Λ\BR/2). (3.5.24)

Proof. A possible choice for the truncation operator TR : Ḣ1 → Hc is given by

TRu(l) := η(|l|/R)(u(l)− aR),

where the cut-off function η : R→ R satisfies η(r) = 1 for r ≤ 4/6 and η(r) = 0 for
r ≥ 5/6 and smooth and monotonic in-between, and

aR := −
∫

(B5R/6\B4R/6)\Γ0

Iu dx.
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We note that

Dρu(l)−DρTRu(l) = (1− η(l + ρ))Dρu(l)−Dρη(l) (u(l)− aR)

and subsequently we take the `2 norm of both sides. Noting that |Dρη(|l|/R)| . R−1,
we apply the discrete Poincaré inequality from Lemma 3.5.5 to the right-hand side
to conclude that indeed

‖DTRu−Du‖`2 . ‖Du‖`2(Λ\BR/2).

We can now prove the convergence result.

Proof of Theorem 3.3.1. Recalling that ū denotes the strongly stable solution to the
infinite problem (3.2.1), we note that the inequality in (3.5.24) implies that for the
truncation operator TR from Lemma 3.5.6, it holds that TRū converges strongly to
ū in the Ḣ1-norm. Furthermore, Theorem 3.2.1 establishes that E ∈ Cα where α is
assumed to satisfy α ≥ 5 (c.f. Section 2.3). It hence follows that δ2E(TRū)→ δ2E(ū)

in the operator norm. Recalling (3.2.2), we can thus conclude that for the domain
size R large enough, for all v ∈ Hc,

〈δ2E(TRū)v, v〉 ≥ 1

2
λ‖v‖2Ḣ1 .

Moreover it follows that

〈δE(TRū), v〉 = 〈δE(TRū)− δE(ū), v〉 . ‖TRū− ū‖Ḣ1‖v‖Ḣ1 .

The fact that for R large enough a strongly stable solution ūR to (3.3.1) exists thus
follows from a standard application of the inverse function theorem [33, Lemma 7.2],
which further establishes that

‖TRū− ūR‖Ḣ1 . ‖TRū− ū‖Ḣ1 . (3.5.25)

Exploiting (3.5.24) and (3.5.25) as well as the decay estimate (3.2.3), we can conclude
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that

‖ūR − ū‖Ḣ1 = ‖ūR − TRū+ TRū− ū‖Ḣ1 . ‖TRū− ū‖Ḣ1 . ‖Du‖`2(Λ\BR/2)

.

(∫ ∞
R/2

r r−3+2δ dr

)1/2

. R−1/2+β,

with β arbitrarily small, since δ can be chosen arbitrarily small.

3.6 Discussion

The results of this chapter extend the mathematical theory of atomistic modelling
of crystalline defects studied in [19, 34, 50] to the case of an anti-plane crack defect
under nearest-neighbour interactions on a square lattice. This work can be regarded
as a first step towards an extension to general atomistic models of fracture, including
vectorial models on an arbitrary lattice under an arbitrary interatomic potential.

In this chapter we have laid out many of the steps needed to achieve this,
and in what follows we discuss some of the key technical difficulties which must be
overcome to extend the present work.

Anti-plane models on an arbitrary Bravais lattice under many-body finite
interactions potential: The missing ingredient needed to extend the results to
anti-plane models beyond NN interactions on a square lattice is the ability to es-
timate the lattice Green’s function in the crack geometry G, which is discussed in
Chapter 4 and is needed to prove Theorem 3.2.2. We refer to the discussion in Sec-
tion 4.5 for further details.

More general static crack models: Already in the simplified anti-plane setup,
the key limiting consequence of the the slow decay of the predictor û can be seen by
looking at

〈E(ū), v〉 =
∑
m∈Λ

∑
ρ∈R(m)

φ′(Dρû(m) +Dρū(m))Dρv(m)

and Taylor-expanding φ′ around 0. Crucially, without the further assumption of
mirror symmetry, which in the case of a square lattice, as discussed in [19, Section
2.2.], fails if both φ(−r) 6= φ(r) and the interaction range is such that each nearest-
neighbour finite difference is accounted for only in one direction, that is R̃ := {e1, e2}
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(with suitable adjustments in the resulting R̃(m) for atoms at the crack surface Γ),
the slow decay rate of û implies thatv 7→ φ′′′(0)

2

∑
m∈Λ

∑
ρ∈R̃(m)

(Dρû(m))2Dρv(m)

 6∈ (Ḣ1)∗, (3.6.1)

unless φ′′′(0) = 0, which is usually not true when considering the 2D lattice as
a projection of an associated 3D lattice. Note that φ(−r) 6= φ(r) is not in itself
enough for the mirror symmetry to fail, because for R(m) defined in (2.1.2), it holds
that

m ∈ Λ and ρ ∈ R(m) =⇒ m+ ρ ∈ Λ and − ρ ∈ R(m+ ρ),

which renders (3.6.1) (with inner sum overR(m) and not R̃(m)) null even if φ′′′(0) 6=
0, since the contribution of (m,m+ρ) is cancelled by the contribution of (m+ρ,m).

To extend the theory beyond models with mirror symmetry one has to follow
the idea of development of solutions introduced in [19], which consists in prescribing
a predictor of the form û+ û2, with the additional term arising from the higher-order
expansion of the atomistic model and how it can be linked to linear PDEs related
to nonlinear elasticity. This ensures that

v 7→
∑
m∈Λ

φ′′(0)Dû2(m) ·Dv(m)

up to leading order cancels with (3.6.1). The role of û2 is especially important for
vectorial models, since the concept of mirror symmetry does not translate to mod-
els that allow for in-plane displacements, meaning that the vectorial equivalent of
(3.6.1) never automatically vanishes.

In-plane static crack models: A further complication related to vectorial mod-
els is that as soon as we look beyond nearest-neighbours interactions, we begin to
observe surface effects, as for instance investigated in [81]. These effects, induced by
the crack surface, do not enter the analysis of vectorial models for dislocations and
point defects in [34] and thus pose a major new challenge, as they can potentially
lead to surface atoms assuming a different structure compared to the bulk which
renders the approximation of CLE invalid. Likewise, this may have an impact on
the corresponding lattice Green’s function and can potentially make obtaining its
decay estimates much more involved.
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The role of loading parameter k: It is the appearance of k that ensures we can
prove existence of strongly-stable solutions to the problem in (3.2.1), as it allows
us to employ the Implicit Function Theorem. This is in contrast with dislocation
problems, where, except for specific cases with stringent assumptions as e.g. in [50],
we simply assume that a solution exists. The use of IFT also points to a potential
bifurcation occurring for some critical kcrit, which is a further deviation from the
known theory, as in CLE the choice of k is irrelevant. This idea will be discussed in
detail in Chapter 5.
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Chapter 4

Lattice Green’s function in the
anti-plane crack geometry

In this chapter we investigate the notion of a lattice Green’s function in the anti-
plane crack geometry, as discussed in the Introduction in Definition 4, which we
already used in the proof of Theorem 3.2.2. We recall from Section 1.2 that this is
particularly difficult due to the fact that the crack breaks the translational symmetry
of the setup, thus rendering the usual Fourier methods, as employed e.g. in [34], not
applicable. However, as is the case in translation-symmetry-preserving setups, the
underlying principle that we follow is that in the far-field away from a source point,
a discrete Green’s function is well-approximated by its continuum counterpart. We
exploit it to construct a suitable Green’s function with desirable decay properties.

Theorem 5, which characterises the decay properties of such a lattice Green’s
function in the anti-plane crack geometry, constitutes the main technical result of
the thesis upon which all other results rely. In particular, in proving Theorem 5
we ensure that Theorem 3 discussed in Chapter 3 can be proven. Furthermore, the
underlying construction and characterisation of a lattice Green’s function in this
geometry is of independent interest and can be employed, e.g. to study upscaling of
screw dislocations [49] in the vicinity of a crack.

4.1 Introduction and notation

In order to ensure clarity, we recall several relevant notions already introduced, start-
ing with the discussion about the discrete kinematics in Section 2.1. In particular we
recall the definition of the discrete gradient operator D in (2.1.3), which disregards
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interactions across the crack by imposing that for any lattice function v : Λ→ R,

if m ∈ Γ± and ρ 6∈ R(m), then (Dv(m))ρ = 0.

This, as discussed in Section 2.2, gives rise to our function space setup, noting that
in particular the definition of the Sobolev space Ḣ1 in (2.2.1) tells us that

v ∈ Ḣ1 =⇒ Dv ∈ `2 and v(1
2 ,

1
2) = 0.

We remark that the latter restriction, used to ensure that the associated ‖ · ‖Ḣ1 =

‖D·‖`2 is a norm, plays a subtle role in the way we construct a lattice Green’s function
for the anti-plane crack geometry. This is discussed below in the concluding part of
Section 4.3.1.

We further recall the definition of the discrete divergence operator from
(3.5.2):

Div g(m) := −
∑
ρ∈R

gρ(m− ρ)− gρ(m), for g : Λ→ RR (4.1.1)

and adapt the general formulation of the Hessian operator H from [34] to the case
of the pair-potential defined in (2.3.1), in particular noting that φ′′(0) = 1, which
results in

〈Hu, v〉 =
∑
m∈Λ

Du(m) ·Dv(m) =⇒ Hu(m) = −DivDu(m) ∀m ∈ Λ, (4.1.2)

with the pointwise formulation following from summation by parts.
In what follows we often work with functions in two variables, thus we intro-

duce a notation for finite differences as follows. If v : Λ× Λ→ R, then

D1ρv(m, l) := v(m+ ρ, l)− v(m, l) and D2ρv(m, l) := v(m, l + ρ)− v(m, l)

and for j ∈ {1, 2}, we have Djv(m1,m2) ∈ RR with

(Djv(m))ρ :=

Djρv(m1,m2) if ρ ∈ R(mj),

0 if ρ 6∈ R(mj).
(4.1.3)

Finally, we refer to Section 3.5.1 in which several other technical concepts of
relevance to our investigation are introduced, in particular the definition of regions
ΩΓ, Γ, Γ0, Q0, the short-hand notation related to the complex square root mapping
ω and the short-hand summation notation that we employ throughout.
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Outline of the chapter: In Section 4.2 we introduce a rigorous definition of a
lattice Green’s function in the anti-plane crack geometry and discuss a general strat-
egy to prove its existence and to characterise its decay properties. We also introduce
some relevant notation. This is followed by the construction of the Green’s function
in Section4.3 and the proof of its decay properties in Section 4.4. We conclude with
a discussion about possible extensions to more general setups in Section 4.5.

4.2 Main Result

We begin with the definition of a Green’s function.

Definition 4.2.1. A function G : Λ×Λ→ R is said to be a lattice Green’s function
G for the anti-plane crack geometry if for all m, s ∈ Λ,

HG(m, s) = δms (4.2.1a)

G(m, s) = G(s,m), (4.2.1b)

where δms denotes the Kronecker delta andH is applied with respect to first variable.

We note that in (4.2.1a) one can view s as a parameter and H as a difference
operator applied with respect to the first variable. However, due to (4.2.1b), it is
also true that (4.2.1a) holds with H applied with respect to the second variable.
Furthermore, G is not uniquely determined, since any discretely harmonic function
can be added, i.e. if v : Λ → R is such that Hv = 0, then G(m, s) + v(m) + v(s)

also satisfies (4.2.1).
For any G satisfying Definition 4.2.1, any solution ū to (3.2.1) can be rewritten

as
Dτ ū(l) =

∑
m∈Λ

(H(D2τG(m, l)) ū(m) =
∑
m∈Λ

Dū(m) ·D1D2τG(m, l),

hence highlighting why finding a lattice Green’s function that has desired decay
properties of its mixed derivative is key to proving Theorem 3.

We establish the following.

Theorem 4.2.2. There exists a lattice Green’s function G : Λ × Λ → R satisfying
Definition 4.2.1 such that, for any δ > 0, ρ ∈ R(l), and σ ∈ R(s),

|D1ρD2σG(l, s)| . (1 + |ωl||ωs||ω−ls |2−δ)−1, (4.2.2)

where ω is the complex square root map defined in (2.4.2) and we recall the shorthand
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notation introduced in (3.5.4), that is

ωl := ω(l), ω−ls := ω(l)− ω(s), ω+
ls := ω(l) + ω(s). (4.2.3)

4.3 Construction of the Green’s function

The approach we employ is based on the observation that finding G, similarly to the
crack problem in Chapter 3 can also be cast as a predictor-corrector problem, with
the decomposition G = Ĝ + Ḡ, where Ĝ has an explicit expression and Ḡ belongs to
the energy space Ḣ1 in both variables. This idea has already been explored in [34],
but was notably aided by the applicability of Fourier methods due to the spatial
homogeneity of the reference configuration. The novelty and difficulty of the present
setting stem from the fact that the discreteness and inhomogeneity of the domain
means that Fourier analysis is no longer applicable. In particular, it renders the task
of establishing the decay estimates on G much more challenging. In our approach we
first establish suboptimal estimates on Ḡ with the help of the homogeneous lattice
Green’s function Ghom, which we define in (4.3.10), employed together with suitably
chosen cut-offs and a local mapping onto a discrete Riemann surface corresponding
to the complex square root. We then use this initial estimate in a boot-strapping
argument. The appearance of arbitrarily small δ > 0 in (4.2.2) follows from the fact
that this argument saturates at the known decay of Ĝ.
Remark 4.3.1. While |ωm| = |m|1/2, in general it is not true that |ω−ms| ∼ |m− s|−1/2,
as in fact

|m− s| = |ω−ms||ω+
ms|. (4.3.1)

The estimate is thus expressed in terms of ω-map, as one can then conveniently
resort to a change of variables ξ = ωm when estimating sums involving ωm, ωs, ω±ms.
See Figure 4.1.

We proceed by first considering two closely related predictor-corrector prob-
lems: one to find G̃1(·, s) ∈ Ḣ1 that satisfies (4.2.1a) for a fixed s and the other to
find G̃2(m, ·) ∈ Ḣ1 that satisfies (4.2.1a) for a fixed m but with H applied to the
second variable. To conclude the there exists a Green’s function satisfying Definition
4.2.1, one then has to make a suitable adjustment that takes into account how Ḣ1

is defined, in particular the restriction that, for

x̂ :=

(
1

2
,
1

2

)
, (4.3.2)

we have G̃1(x̂, s) = G̃2(m, x̂) = 0 as a result of (2.2.1).
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Figure 4.1: The complex square root ω maps the square lattice (left) onto a distorted
half-space lattice (right). In particular, the distorted lattice lives in R2

+, the half-
space with positive first coordinate. The dots represent lattice points and their
images under ω and also their reflections across y-axis.

Rewriting both problems in variational form, we consider

find G̃i ∈ arg min
Ḣ1
Ẽi, (4.3.3)

where

Ẽ1(F) =
∑
m∈Λ

[
1

2

(
|D1Ĝ(m, s) +DF(m)|2 − |D1Ĝ(m, s)|2

)
− δms

(
Ĝ(m, s) + F(m)

)]
,

(4.3.4)

and

Ẽ2(F) =
∑
s∈Λ

[
1

2

(
|D2Ĝ(m, s) +DF(s)|2 − |D2Ĝ(m, s)|2

)
− δms

(
Ĝ(m, s) + F(s)

)]
.

(4.3.5)

As in the case of the crack problem itself, the crucial step is the correct choice of the
predictor Ĝ, which ensures the minimisation problems are well-defined. This can be
achieved by prescribing Ĝ which, away from the point source, is equal to Ĝ satisfying
the corresponding continuum problem, i.e. solving, for s ∈ Λ fixed,

−CΛ∆xĜ(x, s) = δ(x− s) for x ∈ R2 \ Γ0 (4.3.6)

∇xĜ(x, s) · ν = 0 for x ∈ Γ0,

47



and, for x ∈ Λ fixed,

−CΛ∆sĜ(x, s) = δ(x− s) for s ∈ R2 \ Γ0 (4.3.7)

∇sĜ(x, s) · ν = 0 for s ∈ Γ0.

Here δ represents the Dirac delta. The constant CΛ is equal to CΛ = 2 in the present
case, however generally it depends on the choice of the lattice and the interatomic
potential – this is closely related to the discussion in Remark 3.5.2.

Since ω introduced in (2.4.2) is a conformal mapping, it preserves harmonicity
[1]. Further, it maps the crack domain to a half-space domain (cf. Figure 4.1), for
which a Green’s function can be obtained by a reflection argument. It therefore can
be verified that (4.3.6) has a solution

Ĝ(x, s) =
−1

2πCΛ

[
log(|ω(x)− ω(s)|) + log(|ω(x)− ω∗(s)|)

]
, (4.3.8)

where ω∗(x) is defined as the reflection of ω(x) through vertical axis, that is

ω∗(x) =
(
−√rx cos

(
θx
2

)
,
√
rx sin

(
θx
2

))
,

where we refer to Figure 4.1 for a visualisation.
It is easy to see that

Ĝ(x, s) = Ĝ(s, x), (4.3.9)

since
|ω(x)− ω(s)||ω(x)− ω∗(s)| = |ω(x)− ω(s)||ω∗(x)− ω(s)|,

thus Ĝ also solves (4.3.7). It is worth recalling that the complex square root mapping
is also used to construct û.

Finally, bearing in mind that Ĝ(s, s) is not well-defined in the pointwise sense,
the predictor Ĝ : Λ× Λ→ R we prescribe is given by

Ĝ(m, s) :=

Ĝ(m, s) if m 6= s,

0 if m = s,
(4.3.10)

since near the point-source it will always be true that G(s, s) ∼ O(1).
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4.3.1 Proof of Theorem 4.2.2, Part 1: existence of a Green’s func-
tion

We begin by investigating the predictor Ĝ and estimate the decay of its derivatives
of relevant order.

Lemma 4.3.2. For any x, s ∈ R2 \ Γ0 with x, s 6= 0 and x 6= s, and α ∈ {1, 2, 3, 4}

|∇αxĜ(x, s)| . (1 + |ωx|2α−1|ω−xs|)−1 + (1 + |ωx|α|ω−xs|α)−1

=: g(a)
α (x, s) + g(b)

α (x, s) (4.3.11)

and

|∇αx∇sĜ(x, s)| . (1 + |ωx|2α−1|ωs||ω−xs|2)−1 + (1 + |ωx|α|ωs||ω−xs|α+1)−1

=: h(a)
α (x, s) + h(b)

α (x, s). (4.3.12)

Consequently, if m, s ∈ Λ and ρ ∈ R(m) and σ ∈ R(s), then

|D1ρD2σĜ(m, s)| . h
(a)
1 (m, s).

Proof. We first notice that it is sufficient to estimate L(x, s) := log(|ω−xs|), since the
part of (4.3.8) that includes ω∗(s) does not decay any slower. We calculate that

∇xL(x, s) =
1

|ω−xs|2
∇ω(x)ω−xs =⇒ |∇xL(x, s)| . |ω−xs|−1|∇ω(x)| . |ωx|−1|ω−xs|−1.

Similarly,

∇2
xL(x, s) =

1

|ω−xs|2
(
∇2ω(x)[ω−xs] +∇ω(x) · ∇ω(x)

)
− 2

|ω−xs|4
(
∇ω(x)ω−xs

)⊗2
,

which implies that

|∇2
xL(x, s)| . |ω−xs|−1|∇2ω(x)|+ |ω−xs|−2|∇ω(x)|2

. |ωx|−3|ω−xs|−1 + |ωx|−2|ω−xs|−2.

For mixed derivatives we first calculate

∇s∇xL(x, s) =
2

|ω−xs|4
(
∇ω(x)ω−xs

)
⊗
(
∇ω(s)ω−xs

)
− 1

|ω−xs|2
∇ω(x) · ∇ω(s)

=⇒ |∇s∇xL(x, s)| . |ω−xs|−2|∇ω(x)||∇ω(s)| . |ωx|−1|ωs|−1|ω−xs|−2
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and further realise that

∇2
x∇sL(x, s) =

−8

|ω−xs|6
(
∇ω(x)ω−xs

)⊗2 ⊗
(
∇ω(s)ω−xs

)
+

2

|ω−xs|4
(
∇2ω(x)[ω−xs] +∇ω(x) · ∇ω(x)

)
⊗
(
∇ω(s)ω−xs

)
+

4

|ω−xs|4
(
∇ω(x)ω−xs

)
⊗ (∇ω(s) · ∇ω(x))− 1

|ω−xs|2
∇2ω(x)[∇ω(s)],

which leads to

|∇2
x∇sL(x, s)| . |ωx|−3|ωs|−1|ω−xs|−2 + |ωx|−2|ωs|−1|ω−xs|−3.

Remaining cases can be calculated along similar lines, but for the sake of brevity we
choose to omit these tedious calculations. In particular, for α ≥ 3 there begin to
appear extra terms corresponding to intermediate permutations of powers, but these
can always be bounded by the two extreme permutations stated.

The facts that |D1ρD2σĜ(m, s)| . |∇m∇sĜ(m, s)| and h(a)
1 ≡ h

(b)
1 conclude

the proof.

Proposition 4.3.3. For any s ∈ Λ (m ∈ Λ respectively) the energy difference
functional Ê1 (Ê2 resp.) in (4.3.4) ( (4.3.5) resp.) is well-defined on Ḣ1 and infinitely
many times differentiable.

Proof. Here we will explicitly consider the part of the proof related to Ẽ1, as then
the variable symmetry of the predictor, i.e. Ĝ(m, s) = Ĝ(s,m), implies the other
part.

For any v ∈ Ḣ1 we can rewrite the energy difference functional Ẽ1 given by
(4.3.4) as

Ẽ1(v) = Ẽ0(v) + 〈δẼ1(0), v〉,

where

Ẽ0(v) :=
∑
m∈Λ

[
1

2
|D1Ĝ(m, s) +Dv(m)|2 − 1

2
|D1Ĝ(m, s)|2

−D1Ĝ(m, s) ·Dv(m)− δmsĜ(m, s)

]

and
〈δẼ1(0), v〉 =

∑
m∈Λ

(
D1Ĝ(m, s) ·Dv(m)− δmsv(m)

)
.

Due to the quadratic nature of the energy, Ẽ0 reduces to Ẽ0(v) = 1
2‖v‖2Ḣ1 − Ĝ(s, s)
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and thus is well-defined on Ḣ1.
For the second term, we aim to establish that δẼ1(0) is a bounded linear

functional on Ḣ1 and to achieve that we use the fact that Ĝ solves the equation
given by (4.3.6) by applying the same interpolation construction as in Section 3.5.2.
Consequently, we can write

∑
m∈Λ

δmsv(m) = v(s) = CΛ

∫
R2\Γ0

∇Ĝ(x, s) · ∇Iv(x) dx,

and in particular the second equality follows from the weak form of (4.3.6) and the
boundary term is not there due to the boundary condition in (4.3.6). Mirroring the
argument in Section 3.5.2 we can conclude that

〈δẼ1(0), v〉 =
∑

b(m,ρ)6⊂Γ

(
D1ρĜ(m, s)−

∫
Umρ

∇ρĜ(x, s) dx

)
Dρv(m)

+
∑

b(m,ρ)⊂Γ

(
D1ρĜ(m, s)−

∫
Umρ

∇ρĜ(x, s) dx

−
∫
Qmρ

∇ρĜ(x, s) dx

)
Dρv(m)

+
∑

b(m,ρ)⊂Q0

f(m, s)Dρv(m),

where this time |f(m, s)| . |ωs|−1, as∫
B1(0)\Γ0

|∇Ĝ(x, s)|dx . |ωs|−1

∫ 1

0
|x|−1/2dx . |ωs|−1.

Once again employing a Taylor expansion followed by a standard quadrature result
(as discussed in Section 3.5.2) results in

b(m, ρ) 6⊂ Γ =⇒
∣∣∣∣∣D1ρĜ(m, s)−

∫
Umρ

∇ρĜ(x, s) dx

∣∣∣∣∣ . |∇3
xĜ(x, s)|

and

b(m, ρ) ⊂ Γ \Q0 =⇒
∣∣∣∣∣D1ρĜ(m, s)−

∫
Umρ

∇ρĜ(x, s) dx

∣∣∣∣∣ . |∇2
xĜ(x, s)|.

Finally, since Lemma 4.3.2 implies that for both j = 2, 3 and x0 ≈ 0 we have
|∇jxĜ(x0, s)| ∼ |ωs|−1, we can incorporate any bond b(m, ρ) ⊂ Q0 into the general

51



conclusion that

|〈δẼ1(0), v〉| .
4∑
i=1

Ii(v),

with

I1(v) :=
∑

b(m,ρ)6⊂Γ

g
(a)
3 (m)|Dρv(m)|, I2(v) :=

∑
b(m,ρ)6⊂Γ

g
(b)
3 (m)|Dρv(m)| (4.3.13)

and

I3(v) :=
∑

b(m,ρ)⊂Γ

g
(a)
2 (m)|Dρv(m)|, I4(v) :=

∑
b(m,ρ)⊂Γ

g
(b)
2 (m)|Dρv(m)|, (4.3.14)

where g(a)
α and g(b)

α were defined in (4.3.11).
Since |ωm| = |m|1/2, we have |g(a)

3 |, |g
(b)
3 | . |m|−3/2, which is enough to con-

clude that I1(·) and I2(·) are bounded on Ḣ1.
Similarly, |g(a)

2 |, |g
(b)
2 | . |m|−1 and thus I3(·) and I4(·) are bounded on Ḣ1,

since their domain of summation is one–dimensional. Hence we can conclude that
for any v ∈ Ḣ1,

〈δẼ1(0), v〉 . ‖Dv‖`2 .

To conclude Ẽ1 is C∞ we first note that 1
2 |DF(m)|2 =

∑
ρ∈R(m) φ̃(DρF(m)), where

φ̃(r) := 1
2r

2 is a quadratic pair-potential, with φ̃(j) ≡ 0 for j ≥ 3, thus, similarly as
in the corresponding part of the proof of Theorem 3.2.1, the argument of [68] applies.
Likewise, the first variation of the Kronecker delta term can be explicitly calculated
and all subsequent ones vanish, thus giving the result.

Lemma 4.3.4. For any s ∈ Λ, the minimisation problem (4.3.3) for i = 1 has a
unique solution G̃1(·, s) ∈ Ḣ1. Similarly, for any m ∈ Λ, the minimisation problem
(4.3.3) for i = 2 has a unique solution G̃2(m, ·) ∈ Ḣ1.

Proof. The existence G̃1(·, s) and G̃2(m, ·) is guaranteed by the quadratic nature of
the energy Ẽi, which implies that the problem of finding its critical point is linear,
thus allowing us to invoke the standard Lax-Milgram lemma. The minimisers satisfy

〈δẼ1(G̃1), v〉 = 0 and 〈δẼ2(G̃2), v〉 = 0 ∀v ∈ Ḣ1, (4.3.15)

where

〈δẼ1(G̃1), v〉 =
∑
m∈Λ

(D1Ĝ(m, s) +D1G̃1(m, s)) ·Dv(m) − δmsv(m),

52



〈δẼ2(G̃2), v〉 =
∑
s∈Λ

(D2Ĝ(m, s) +D2G̃2(m, s)) ·Dv(s) − δsmv(s).

It can be readily checked that in fact G̃2(m, s) = G̃1(s,m), in particular since
the restriction in the definition of Ḣ1 is satisfied, that is for m ∈ Λ we indeed have
G̃2(m, x̂) = G̃1(x̂,m) = 0, with x̂ defined in (4.3.2).

To conclude the result one thus requires to establish that in fact G̃1 ≡ G̃2,
or in other words that G̃1(m, s) = G̃1(s,m). The reason why two minimisation
problems were introduced in (4.3.3), however, is that this cannot be guaranteed
without making a suitable adjustment that correctly takes into account the definition
of Ḣ1. The following weaker preliminary result is first obtained. For notational
convenience in what follows we set G̃ ≡ G̃1.

Lemma 4.3.5. For any l, s ∈ Λ and λ ∈ R(l), τ ∈ R(s), the unique solution G̃ from
Lemma 4.3.4 satisfies

D1λD2τ G̃(l, s) = D2λD1τ G̃(s, l).

Proof. The first equation in (4.3.15) implies that, for any v ∈ Ḣ1 and any l ∈ Λ,

v(l) =
∑
m∈Λ

D1(Ĝ + Ḡ)(m, l) ·Dv(m). (4.3.16)

Since for any λ ∈ R(l) we have l + λ ∈ Λ, we also have

v(l + λ) =
∑
m∈Λ

D1(Ĝ + Ḡ)(m, l + λ) ·Dv(m). (4.3.17)

Subtracting (4.3.16) from (4.3.17) and letting v = D2τ Ḡ(·, s), we obtain

D1λD2τ G̃(l, s) =
∑
m∈Λ

D1D2λ(Ĝ + G̃)(m, l) ·D1D2τ G̃(m, s)

and since Lemma 4.3.2 ensures that
(
D2λĜ(·, l)−D2λĜ(x̂, l)

)
∈ Ḣ1, we can split

this infinite sum and write

D1λD2τ G̃(l, s) = A+B,

where
A :=

∑
m∈Λ

D1D2τ G̃(m, s) ·D1D2λG̃(m, l)
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and
B :=

∑
m∈Λ

D1D2τ G̃(m, s) ·D1D2λĜ(m, l).

Since δẼ1 is linear, one starts by observing that the first equation of (4.3.15)
implies, for all v ∈ Ḣ1,

0 = 〈δẼ1(G̃(·, s+ τ)), v〉 − 〈δẼ1(G̃(·, s)), v〉 = 〈δẼ1(D2τ G̃(·, s)), v〉. (4.3.18)

Treating
(
D2λĜ(·, l)−D2λĜ(x̂, l)

)
∈ Ḣ1 as a test function in (4.3.18), we subtract

this expression from B to conclude that

B =
∑
m∈Λ

−D1D2τ Ĝ(m, s) ·D1D2λĜ(m, l) +D1τD2λĜ(s, l).

The same analysis can be employed to further conclude that

D2λD1τ G̃(s, l) = A+ C,

where A is defined above and

C : =
∑
m∈Λ

D1D2λG̃(m, l) ·D1D2τ Ĝ(m, s)

=
∑
m∈Λ

−D1D2λĜ(m, l) ·D1D2τ Ĝ(m, s) +D1λD2τ Ĝ(l, s),

where the final passage follows from applying the first equality in (4.3.15).
Finally, noting that the variable symmetry of Ĝ stated in (4.3.9) implies that

D1τD2λĜ(s, l) = D1λD2τ Ĝ(l, s),

we can conclude that B ≡ C, thus establishing the result.

We are now in a position to prove the main result of this section.

Proof of Theorem 4.2.2, Part 1: existence of a Green’s function. Starting with the
equality established in Lemma 4.3.5, we can apply the indefinite sum operator (dis-
crete anologue of indefinite integration, cf. [52]) in the second variable to conclude
that

D1λG̃(m, s) = D2λG̃(s,m) + fλ(m),

for some lattice function fλ : Λ→ R. Similarly, applying indefinite sum operator in
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the first variable implies that

G̃(m, s) = G̃(s,m) + F (m) +K1(s), (4.3.19)

where DλF (m) = fλ(m) and K1 a is a lattice function to be determined and origi-
nating from indefinite summation. We can repeat the procedure in the reverse order
to obtain

D2τ G̃(m, s) = D1τ G̃(s,m) + kτ (s).

Taking τ = λ and exchanging m and s we obtain that for any lattice direction λ we
have kλ(m) = −fλ(m). Indefinitely summing one more time results in

G̃(m, s) = G̃(s,m)− F (s) +K2(m). (4.3.20)

Comparing (4.3.19) and (4.3.20) we conclude that K1(s) = −F (s) and K2(m) =

F (m) and thus
G̃(m, s) = G̃(s,m) + F (m)− F (s), (4.3.21)

for some F that arises from the restriction in the definition of the energy space Ḣ1.
By adding and subtracting the same constant we can in fact also write that

G̃(m, s) + F2(s) = G̃(s,m) + F2(m),

where F2(m) := F (m)− F (x̂), which conveniently implies that F2(x̂) = 0. We now
let m = x̂ and realise that

F2(s) = G̃(s, x̂).

Thus the actual relation is given by

G̃(m, s) + G̃(s, x̂) = G̃(s,m) + G̃(m, x̂) (4.3.22)

and we can conclude the proof by stating that the atomistic correction Ḡ we sought is
given by Ḡ(m, s) := G̃(m, s)+ G̃(s, x̂), as it clearly satisfies both equations in (4.3.15)
and in addition, due to (4.3.22), Ḡ(m, s) = Ḡ(s,m).
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4.4 Proof of Theorem 4.2.2, Part 2: Green’s function
decay estimate

4.4.1 Preliminaries

The decay of |D1D2Ĝ| is explicitly calculated in Lemma 4.3.2, thus we turn our
attention to the decay of the corrector Ḡ. The general approach we employ is to get
insight in the decay behaviour of Ḡ in different regions on Λ. For a fixed s ∈ Λ with
|s| large enough, we carve the lattice into three regions:

Ω1(s) := B|s|/2(0) ∩ Λ, A(s) :=
(
B3|s|/2(0) \B|s|/2(0)

)
∩ Λ,

Ω2(s) :=
(
R2 \B3|s|/2(0)

)
∩ Λ.

Figure 4.2: The lattice with point-source s depicted in dark blue and Ω1(s) being
the inner ball with red boundary, Ω2(s) the outer region with green boundary and
A(s) the annulus in-between.

In the following we will extensively use the fact that locally the defective
lattice does not differ from a homogeneous lattice and thus the result from the
spatially homogeneous setup apply, as long as we introduce suitable cut-offs. The
general idea behind the cut-off function η : R2 → R to be used throughout is as
follows. We define it as η(x) := η̂(|x− ŷ|/R), where η̂ : R → R is such that η̂(x) = 1
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for x ∈ [0, c1], η(x) = 0 for x > c2, and smooth and decreasing inbetween. As a
result Dη will only be non-zero on an annulus that scales like R. It is also clear,
by Taylor expansion, that |Djη(x)| . R−j . The radius R, the lattice point ŷ, and
constants c1 < c2 will be chosen as needed.

Finally, we also recall the existence and the decay of the homogeneous lattice
Green’s function Ghom corresponding to the homogenous hessian operator H̃:

H̃u(m) := Div D̃u(m), (4.4.1)

where we recall the definition of discrete divergence in (4.1.1) and also from (2.1.3)
that D̃u(m) = (Dρu(m))ρ∈R, i.e. we always use full stencils. It is proven in [34] in
a much more general setup that there exists Ghom : Λ→ R such that

H̃Ghom(m− l) = δml ∀m, l ∈ Λ,

where δ denotes the Kronecker delta, and

|DjGhom(m− l)| . (1 + |m− l|j)−1. (4.4.2)

With these tools in hand we can gain preliminary insight into the decay behaviour of
Ḡ, however the appearance of the cut-off function restricts us to a suboptimal result.

We proceed in a number of steps, listed in separate section for clarity.

4.4.2 Decay of the first derivative of Ḡ away from the origin

Lemma 4.4.1. If l ∈ Λ \ Ω1(s) and τ ∈ R(l), then

|D1τ Ḡ(l, s)| . (1 + |ωl||ω−ls |)−1.

Proof. Due to the spatial restriction on l, we can always choose ŷ = l,

R = |ωl||ω−ls |

with c1 and c2 such that the support of the cut-off function η does not reach the
origin, e.g. c1 = 1

12 , c2 = 1
6 . This is true because |ωl| = |l|1/2 and trivially |ω−ls | ≤

|ωl|+ |ωs| ≤ (1 +
√

2)|ωl|.
We distinguish two cases and deal with them separately. The distinction is

motivated by the fact that the first case concerns the region away from the crack
and translates almost verbatim to vectorial models on an arbitrary Bravais lattice
with a finite-range interatomic potential. On the other hand, in Case 2 we handle
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the near-crack region with an argument that heavily exploits the setting of a scalar
anti-plane model posed on a square lattice under a nearest-neighbour pair-potential.

Case 1: supp η ∩ Γ = ∅ (bulk).
With the support of the cut-off function not crossing the crack surface, we can
directly write

D1τ Ḡ(l, s) = D1τ [Ḡ(l, s)η(l)]

=
∑
m∈Λ

H̃DτGhom(m− l)]Ḡ(m, s)η(m)

=
∑
m∈Λ

∑
ρ∈R

DρDτGhom(m− l)D1ρ[Ḡ(m, s)η(m)], (4.4.3)

where the first equality is due to the fact that near l the cut-off is just 1, the second
follows from the definition of the homogeneous lattice Green’s function and the fact
that with the cut-off in place we effectively sum over a finite region, where there is
no disparity between H and H̃. The last equality is just summation by parts.

In order to use the fact that Ḡ satisfies equation given in (4.3.15), we need to
push the cut-off onto the other term by exploiting the discrete product rule satisfied
by any f, g : Λ→ R and given by

Dρ[fg](m) = f(m+ ρ)Dρg(m) + f(m)Dρg(m) (4.4.4a)

= g(m+ ρ)Dρf(m) + g(m)Dρf(m) (4.4.4b)

= Aρf(m)Dρg(m) +Dρf(m)Aρg(m), (4.4.4c)

where Aρf(m) := 1
2 (f(m+ ρ) + f(m)) is the average operator.

This leads to
D1τ Ḡ(l, s) = S1 + S2,

where the first term is in the form allowing us to exploit the equation, namely

S1 =
∑
m∈Λ

∑
ρ∈R

Dρ[DτGhom(m− l)η(m)]D1ρḠ(m, s)

and the second term makes sure that the right-hand side is consistent with (4.4.3),
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that is

S2 =
∑
m∈Λ

∑
ρ∈R

Dρη(m)

[
AρDτGhom(m− l)D1ρḠ(m, s)

+DρDτGhom(m− l)A1ρḠ(m, s)

]
.

Here A1ρf(m, s) := 1
2 (f(m+ ρ, s) + f(m, s)).

We deal with both terms separately. For S1 we realise that

v(m) := DτGhom(m− l)η(m) (4.4.5)

is in fact compactly-supported, so is an admissible test function in the energy space
Ḣ1. In particular, it satisfies |Dρv(m)| . |m − l|−2 = |ω−ml|−2|ω+

ml|−2, a relation
established in (4.3.1), and for m ∈ Bc2R(l), which is equal to supp η, we trivially
have that |ω+

ml| ≥ |ωm|, from which it further follows that

|ω−ml| =
|m− l|
ω+
ml

≤ |m− l||ωm|
,

where the first equality is due to (4.3.1). We can further establish that m ∈ Bc2R(l)

implies |m − l| ≤ c2R ≤ 1+
√

2
6 |l| and |l|

(
1− 1+

√
2

6

)
≤ |m|, which after elementary

rearranging implies that |ω+
ml| ≥ |ωm| ≥ |ω−ml|, which ultimately leads to

|m− l|−2 . |ω−ml|−2|ωm|−2 . |ω−ml|−4. (4.4.6)

Exploiting the fact that Ḡ satisfies (4.3.15) we conclude that

|S1| =
∣∣∣−〈δẼ1(0), v〉

∣∣∣ . 4∑
i=1

Ii(v),

where I1, . . . , I4 are defined in (4.3.13) and (4.3.14).
We look at each term separately and begin by noting that

I1(v) .
∑

m∈Bc2R(l)

(1 + |ωm|5|ω−ms|)−1(1 + |ω−ml|2|ωm|2)−1 =:
∑

m∈Bc2R(l)

f1(m)

and observe that away from the potential sharp spikes at m = l and m = s we can
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bound this series by the corresponding integral, that is we can say

I1(v) . f1(l) + f1(s)1Bc2R(l)(s) +

∫
DR(l)

f1(x)dx,

where DR(l) := Bc2R(l)\(B1(l)∪B1(s)). The indicator function 1 covers cases when
s 6∈ Bc2R(l). Clearly

f1(l) = (1 + |ωl|5|ω−ls |)−1,

whereas f1(s)1Bc2R(l)(s) 6= 0 only if s ∈ Bc2R(l), but then |s| ∼ |l|, which implies

f1(s)1Bc2R(l)(s) . (1 + |ωl|2|ω−ls |2)−1. (4.4.7)

For the integral term we introduce a change of variables ξ = ωm, and set
γ := ωs, ζ := ωl, leading to dm = |ξ|2dξ. As a result we have∫

DR(l)
f1(x)dx≤

∫
ω(DR(l))

|ξ|2
(1 + |ξ|5|ξ − γ|)(1 + |ξ − ζ|4)

dξ

=:

∫
ω(DR(l))

f̃1(ξ)dξ,

where the first inequality follows from (4.4.6).
Carving the region of integration into

Ωγ := B |γ−ζ|
2

(γ) ∩ ω(DR(l)), (4.4.8a)

Ωζ := B |γ−ζ|
2

(ζ) ∩ ω(DR(l)), (4.4.8b)

Ω′ := ω(DR(l)) \ (Ωγ ∪ Ωζ) (4.4.8c)

and noting that depending on where l and s are, some of them could be empty, we
can estimate the integral as follows.

First we notice the following spatial relations

ξ ∈ ω(DR(l)) =⇒ |ξ| ∼ |ζ|, (4.4.9a)

ξ ∈ Ωγ =⇒ |ξ − ζ| & |ζ − γ|, (4.4.9b)

ξ ∈ Ωζ =⇒ |ξ − γ| & |ζ − γ|. (4.4.9c)
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Thus ∫
Ωγ

f̃1dξ .
|ζ|2

1 + |ζ − γ|4
∫

Ωγ

1

1 + |ζ|5|ξ − γ|dξ

.
|ζ|2

1 + |ζ − γ|4
∫ |ζ−γ|

2

1
|γ|

r

1 + |ζ|5rdr

. (1 + |ζ|3|ζ − γ|3)−1,

where the lower limit of integration in the third integral follows from the fact that
we exclude a unit ball around |s| in the original domain. The same reasoning was
used to estimate (3.5.18).

Likewise,∫
Ωζ

f̃1dξ .
|ζ|2

1 + |ζ|5|ζ − γ|

∫
Ωζ

1

1 + |ζ − γ|4dξ . (1 + |ζ|3|ζ − γ|)−1 (4.4.10)

and ∫
Ω′
f̃1dξ .

1

(1 + |ζ|5|ζ − γ|)(1 + |ζ − γ|4)

∫
Ω′
|ξ|2dξ . (1 + |ζ|3|ζ − γ|3)−1,

where the final passage relies on the fact that we can map back to Bc2R(l) and have
a volume term that scales like R2 = |ζ|2|ζ − γ|2.

For I2(v) (recalling its definition from (4.3.13)), similarly,

I2(v) .
∑

m∈Bc2R(l)

(1 + |ωm|3|ω−ms|)−3(1 + |ω−ml|2|ωm|2)−1 =:
∑

m∈Bc2R(l)

f2(m)

and hence
I2(v) . f2(l) + f2(s)1Bc2R(l)(s) +

∫
DR(l)

f2(x)dx.

We observe that, due to the same reasoning as in (4.4.7), we have

f2(l) = (1 + |ωl|3|ω−ls |3)−1 and f2(s)1Bc2R(l)(s) . (1 + |ωl|2|ω−ls |2)−1. (4.4.11)

Furthermore,∫
DR(l)

f2(x)dx =

∫
ω(DR(l))

|ξ|2
(1 + |ξ|3|ξ − γ|3)(1 + |ξ|2|ξ − ζ|2)

dξ

=:

∫
DR(l))

f̃2(ξ)dξ,
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with estimates, again arising from the spatial relations established in (4.4.9),∫
Ωγ

f̃2dξ .
|ζ|2

1 + |ζ|2|ζ − γ|2
∫

Ωγ

1

1 + |ζ|3|ξ − γ|3dξ

.
|ζ|2

1 + |ζ|2|ζ − γ|2
∫ |ζ−γ|

2

1
|γ|

r

1 + |ζ|3r3
dr

. (1 + |ζ|2|ζ − γ|2)−1, (4.4.12)

∫
Ωζ

f̃2dξ .
|ζ|2

1 + |ζ|3|ζ − γ|3
∫

Ωζ

1

1 + |ζ|2|ξ − ζ|2dξ

. (1 + |ζ|3|ζ − γ|3)−1 log |ζ − γ|

and ∫
Ω′
f̃2dξ .

1

(1 + |ζ|3|ζ − γ|3)(1 + |ζ|2|ζ − γ|2)

∫
Ω′
|ξ|2dξ

. (1 + |ζ|3|ζ − γ|3)−1,

Finally, since for now we assume that supp η ∩ Γ = ∅, we trivially have that
I3(v) = I4(v) = 0. It can be thus concluded that S1 . (1 + |ζ|2|ζ − γ|)−1 =

(1 + |ωl|2|ω−ls |)−1, with the exponents taken from combining (4.4.10), (4.4.11) and
(4.4.12).

For S2 we realise that Dρη(m) is only non-zero for m ∈ AR := Bc2R(l) \
Bc1R(l), which corresponds to a volume term that scales like R2 = |ωl|2|ω−ls |2. It
also in particular implies that |m− l| and |ωl||ω−ls | are comparable. We can thus use
Cauchy-Schwarz inequality and the decay of each term to conclude that

|S2| .
(
|ωl|(−4+2)|ω−ls |(−4+2)

)1/2
‖DḠ(·, s)‖`2

+
(
|ωl|(−6+2)|ω−ls |(−6+2)

)1/2
‖AḠ(·, s)‖`2(AR)

. (1 + |ωl||ω−ls |)−1,

where the last inequality is due to ‖AḠ(·, s)‖`2(AR) . R‖DḠ(·, s)‖`2 , a result that
immediately follows from [33, Lemma 7.1].

Case 2: supp η ∩ Γ 6= ∅ (near crack surface).
To cover this more problematic case we resort to a technical trick at present only
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seems to be applicable to a square lattice with NN interactions. We begin by con-
structing a discrete equivalent of a Riemann surface corresponding to the complex
square root map,

M := Z2 × {−1, 1}, (4.4.13)

that is, we look at two copies of the square lattice and so k ∈ M is such that
k = (kl, kb), where kl corresponds to a lattice site and kb determines whether we
are on the positive branch or the negative branch (as with the complex square root
mapping).

For u : M→ R and a lattice direction ρ ∈ R, we also define the notion of a
finite difference Dρ and of a swapping finite difference Ds

ρ as

Dρu(k) := u(kl + ρ, kb)− u(kl, kb)

Ds
ρu(k) := u(kl + ρ,−kb)− u(kl, kb).

Since kb ∈ {−1, 1}, we note that in the latter case we simply jump from one branch
to another. The corresponding manifold discrete gradient operator as Du(k) ∈ RR

can then be defined as

(Du(k)
)
ρ

=

Dρu(k) if ρ ∈ R(kl),

Ds
ρu(k) if ρ 6∈ R(kl).

(4.4.14)

Comparing this with the definition of the discrete gradient in (2.1.3), we observe
that the they only differ at lattice points on Γ+ ∪Γ−. This underlines the reasoning
behind the construction - we take two copies of the lattice and glue them together
at the ’cut’ created by the crack, thus ensuring that in fact we always work with full
stencils. Consequently, we can again locally use the homogeneous lattice Green’s
function Ghom, as long as we avoid the origin ofM.

We further define the manifold equivalent of Ḣ1 defined in (2.2.1) as

Ḣ1
M :=

{u : M→ R |Du ∈ `2 and u(x̂,±1) = 0
}
. (4.4.15)

Likewise, we can extend the notion of the predictor Ĝ defined in (4.3.10) to
the manifold setup by defining ĜM : M× Z2 → R as

ĜM(k, s) :=

Ĝ(kl, s) if kb = 1,

Ĝ((kl1 ,−kl2), s) if kb = −1,

that is, for the negative branch, we reflect the original predictor across x-axis. Note
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that the manifold finite difference operators are always applied with respect to the
first variable.

Finally, we can also consider a manifold equivalent of the energy-difference
Ẽ1 defined in (4.3.4), which we define as

ẼM(GM) =
∑
k∈M

[
1

2

(∑
ρ∈R

(D ĜM(k, s))ρ + (DGM(k, s))ρ)
2 − (D ĜM(k, s))2

ρ

)

− (δ(k, (s, 1)) + δ(k, ((s1,−s2),−1)))
(
ĜM(k, s) + GM(k, s)

)]
.

(4.4.16)

It follows immediately from Proposition 4.3.3 that ẼM is well-defined over Ḣ1
M and

smooth. Thus we can again look at the problem of finding a stationary point ḠM
which satisfies

〈δẼM(ḠM), u〉 = 0 ∀u ∈ Ḣ1
M, (4.4.17)

where

〈δẼM(ḠM), u〉 =
∑
k∈M

[∑
ρ∈R

(
DρĜM(k, s) + DρḠM(k, s)

)
Dρu(m)

− (δ(k, (s, 1)) + δ(k, ((s1,−s2),−1))) u(k)

]
.

Crucially, the way we define ĜM implies that the contribution from the new bonds
across Γ is null, as e.g. for l ∈ Γ− we have l+e2 = (l1,−l2), hence Ds

e2 ĜM((l, 1), s) =

0. This in turn tells us the solution to (4.4.17) is given by

ḠM(k, s) :=

Ḡ(kl, s) if kb = 1,

Ḡ((kl1 ,−kl2), s) if kb = −1.

Thus to obtain the decay estimate for |D1τ Ḡ(l, s)|, we proceed as follows.
Without loss of generality we can assume that l2 < 0 and accordingly define a
reflected version of G = Ĝ + Ḡ as Gref : Λ→ R with Gref = Ĝref + Ḡref , where

Ĝref(m, s) :=

Ĝ(m, s) if m2 < 0,

Ĝ((m1,−m2), s) if m2 > 0
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and

Ḡref(m, s) :=

Ḡ(m, s) if m2 < 0,

Ḡ((m1,−m2), s) if m2 > 0.

Hence, by construction we have D1τ Ḡ(l, s) = D1τ Ḡref(l, s) and we can write

D1τ Ḡ(l, s) = D1τ [Ḡref(l, s)η(l)] =
∑
m∈Λ

H̃DτGhom(m− l)Ḡref(m, s)η(m)

=
∑
m∈Λ

∑
ρ∈R

DρDτGhom(m− l)D1ρ[Ḡref(m, s)η(m)]

= S1 + S2,

with
S1 =

∑
m∈Λ

∑
ρ∈R

Dρ[DτGhom(m− l)η(m)]D1ρḠref(m, s),

and

S2 =
∑
m∈Λ

∑
ρ∈R

Dρη(m)

[
AρDτGhom(m− l)D1ρḠref(m, s)

+DρDτGhom(m− l)A1ρḠref(m, s)

]
.

Noting that the nullity of bonds across the x-axis of Ḡref due to reflection
ensures that ‖D1Ḡref(·, s)‖`2 < ∞, the argument for S2 is unaffected, thus we can
immediately conclude that S2 . (1 + |ωl||ω−ls |)−1. For S1 we recall the definition of
v in (4.4.5) and define its manifold equivalent vM : M→ R by

vM(k) :=

v(kl) if (kl2 < 0 ∧ kb = 1) ∨ (kl2 > 0 ∧ kb = −1),

0 otherwise.

As a result we have
S1 =

∑
k∈M

D ḠM(k, s) ·DvM(k)

and thus we can exploit (4.4.17) to conclude that

S1 =
∑
k∈M

−D ĜM(k, s) ·DvM(k) + vM((s, 1)) + vM((s,−1)).

65



We can now introduce

Ĝ+(m, s) :=

ĜM((m, 1), s) if m2 < 0,

0 if m2 > 0,

Ĝ−(m, s) :=

ĜM((m,−1), s) if m2 > 0,

0 if m2 < 0,

v+(m) :=

v(m) if m2 < 0,

0 if m2 > 0,
v−(m) :=

v(m) if m2 > 0,

0 if m2 < 0.
(4.4.18)

and are able to conclude that in fact

S1 =

(∑
m∈Λ

−D1Ĝ+(m, s) ·Dv+(m) + v+(s)

)

+

(∑
m∈Λ

−D1Ĝ−(m, s) ·Dv−(m) + v−((s1,−s2))

)
=: S+ + S−,

i.e., we look at the positive and negative branch separately. We further note that
due to reflection we always have

|D1Ĝ−(m, s) ·Dv−(m)| ≤ |D1Ĝ+((m1,−m2), s) ·Dv+((m1,−m2))|,

and consequently any estimate that applies to |S+| equally applies to |S−|. Further-
more, |S+| can be estimated as in Case 1, except now I3(v+), I4(v+) 6= 0, but we can
estimate them as follows.

With Γl := Bc2R(l) ∩ Γ, we first note that

I3(v+) .
∑
m∈Γl

(1 + |ωm|3|ω−ms|)−1(1 + |ω−ml|2|ω+
ml|2)−1 =:

∑
m∈Γl

f3(m)

and again argue that

I3(v+) . f3(l)1Γl(l) + f3(s)1Γl(s) +

∫
Γ̃l

f3(x)dx,

where Γ̃l := Γl \ (B1(l) ∪ B1(s)). The indicator function 1 is there to cover cases
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when l, s 6∈ Γl. It is clear that

f3(l) = (1 + |ωl|3|ω−ls |)−1 and f3(s)1Γl(s) . (1 + |ωl|2|ω−ls |2)−1,

where in particular for the second inequality we argue as in (4.4.7).
For the integral term we again introduce a change of variables ξ = ωm and

due to ω(Γl) being a one-dimensional line, we can conclude that dm . |ξ|dξ. As a
result, we have∫

Γ̃l

f3(x)dx =

∫
ω(Γ̃l)

|ξ|
(1 + |ξ|3|ξ − γ|)(1 + |ξ − ζ|2||ξ + ζ|2)

dξ

=:

∫
ω(Γ̃l)

f̃3(ξ)dξ.

Mimicking the approach for I1(v) and I2(v), we carve the region of integration into

Γγ := B |γ−ζ|
2

(γ) ∩ ω(Γ̃l), (4.4.19a)

Γζ := B |γ−ζ|
2

(ζ) ∩ ω(Γ̃l), (4.4.19b)

Γ′l := ω(Γ̃l) \ (Γγ ∪ Γζ) (4.4.19c)

and observe that the spatial relations in (4.4.9) remain valid. Hence,∫
Γγ

f̃3dξ .
|ζ|

1 + |ζ|2|ζ − γ|2
∫

Γγ

1

1 + |ζ|3|ξ − γ|dξ

. (1 + |ζ|4|ζ − γ|2)−1(log |ζ|+ log |ζ − γ|),∫
Γζ

f̃3dξ .
|ζ|

1 + |ζ|3|ζ − γ|

∫
Γζ

1

1 + |ζ|2|ξ − ζ|2dξ . (1 + |ζ|4|ζ − γ|)−1

and∫
Γ′l

f̃3dξ .
1

(1 + |ζ|2|ζ − γ|2)(1 + |ζ|3|ζ − γ|)

∫
Γγ

|ξ|dξ . (1 + |ζ|4|ζ − γ|2)−1,

thus allowing us to conclude that

I3(v+) . (1 + |ζ|2|ζ − γ|)−1 = (1 + |ωl|2|ω−ls |)−1.

The exact same argument can also be employed to establish that

I4(v+) . (1 + |ζ|2|ζ − γ|)−1 = (1 + |ωl|2|ω−ls |)−1,
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which implies |S1| . (1 + |ωl|2|ω−ls |)−1. This concludes the proof.

4.4.3 Decay of the mixed second derivative of Ḡ in an annulus

Lemma 4.4.1 sets the scene for the rest of the proof. In particular we exploit it to
establish the first result for the mixed derivative of Ḡ.

Lemma 4.4.2. If l ∈ A(s), τ ∈ R(l), and λ ∈ R(s), then

|D1τD2λḠ(l, s)| . (1 + |ωl||ωs||ω−ls |2)−1.

Proof. Using the same cut-off function η as in Lemma 4.4.1, we again distinguish
two cases.

Case 1: supp η ∩ Γ = ∅.
We write

D1τD2λḠ(l, s) = S1 + S2,

where this time

S1 =
∑
m∈Λ

∑
ρ∈R

Dρ[DτGhom(m− l)η(m)]D1ρD2λḠ(m, s)

and

S2 =
∑
m∈Λ

∑
ρ∈R

Dρη(m)

[
AρDτGhom(m− l)D1ρD2λḠ(m, s)

+DρDτGhom(m− l)A1,ρD2λḠ(m, s)

]
.

The S1 part can be treated similarly to before, with the key difference being that
we have an extra s-derivative on terms corresponding to the predictor. We thus let
v(m) := DτGhom(m− l)η(m) and estimate

|S1| .
4∑
i=1

Ji(v),
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where (Ji) are defined as similarly (Ii) in (4.3.13)-(4.3.14), but with an additional
derivative with respect to s, namely

J1(v) =
∑

b(m,ρ)6⊂Γ

h
(a)
3 (m)|Dρv(m)|, J2(v) =

∑
b(m,ρ) 6⊂Γ

h
(b)
3 (m)|Dρv(m)| (4.4.20)

and

J3(v) =
∑

b(m,ρ)⊂Γ

h
(a)
2 (m)|Dρv(m)|, J4(v) =

∑
b(m,ρ)⊂Γ

h
(b)
2 (m)|Dρv(m)|, (4.4.21)

with h(a)
α and h(b)

α defined in (4.3.12).
Throughout we apply the same procedure as in the proof of Lemma 4.4.1,

thus we omit some repetitions. We begin by recalling the decay estimate of the
homogeneous Green’s function Ghom given in (4.4.2) and the subsequent discussion
following the definition in (4.4.5), which together imply that

J1(v) .
∑

m∈Bc2R(l)

(1 + |ωm|5|ωs||ω−ms|2)−1(1 + |ω−ml|2|ωm|2)−1 =:
∑

m∈Bc2R(l)

g1(m)

which then leads to

J1(v) . g1(l) + g1(s)1Bc2R(l)(s) +

∫
DR(l)

g1(x)dx.

It is further true that

g1(l) = (1 + |ωl|5|ωs||ω−ls |2)−1 and g1(s)1Bc2R(l)(s) . (1 + |ωl||ωs||ω−ls |2)−1.

We then consider∫
DR(l)

g1(x)dx =

∫
ω(DR(l))

|ξ|2
(1 + |ξ|5|γ||ξ − γ|2)(1 + |ξ − ζ|4)

dξ =:

∫
ω(DR(l))

g̃1(ξ)dξ

and recall the regions of integration from (4.4.8). Following the same logic as in the
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proof of Lemma 4.4.1, we can thus conclude that∫
Ωγ

g̃1dξ .
|ζ|2

1 + |ζ − γ|4
∫

Ωγ

1

1 + |ζ|5|γ||ξ − γ|2dξ

.
|ζ|2

1 + |ζ − γ|4
∫ |ζ−γ|

2

1
|γ|

r

1 + |ζ|5|γ|r2
dr

. (1 + |ζ|3|γ||ζ − γ|4)−1 log |ζ − γ|,
∫

Ωζ

g̃1dξ .
|ζ|2

1 + |ζ|5|γ||ζ − γ|2
∫

Ωζ

1

1 + |ζ − γ|4dξ . (1 + |ζ|3|γ||ζ − γ|2)−1

and∫
Ω′
ĝ1dξ .

1

(1 + |ζ|5|γ||ζ − γ|2)(1 + |ζ − γ|4)

∫
Ω′
|ξ|2dξ . (1 + |ζ|3|γ||ζ − γ|4)−1.

For J2(v), similarly,

J2(v) .
∑

m∈Bc2R(l)

(1 + |ωm|3|ωs||ω−ms|4)−1(1 + |ω−ml|2|ωm|2)−1 =:
∑

m∈Bc2R(l)

g2(m)

and thus
J2(v) . g2(l) + g2(s)1Bc2R(l)(s) +

∫
DR(l)

g2(x)dx.

We further note that

g2(l) = (1 + |ωl|3|ωs||ω−ls |4)−1 and g2(s)1Bc2R(l)(s) . (1 + |ωl||ωs||ω−ls |2)−1

and ∫
DR(l)

g2(x)dx, =

∫
ω(DR(l))

|ξ|2
(1 + |ξ|3|γ||ξ − γ|4)(1 + |ξ|2|ξ − ζ|2)

dξ

=:

∫
DR(l))

g̃2(ξ)dξ,

with estimates∫
Ωγ

g̃2dξ .
|ζ|2

1 + |ζ|2|ζ − γ|2
∫

Ωγ

1

1 + |ζ|3|γ||ξ − γ|4dξ

.
|ζ|2

1 + |ζ|2|ζ − γ|2
∫ |ζ−γ|

2

1
|γ|

r

1 + |ζ|3|γ|r4
dr . (1 + |ζ|3|γ||ζ − γ|2)−1,
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∫
Ωζ

g̃2dξ .
|ζ|2

1 + |ζ|3|γ||ζ − γ|4
∫

Ωζ

1

1 + |ζ|2|ξ − ζ|2dξ . (1+|ζ|3|γ||ζ−γ|4)−1 log |ξ−γ|

and∫
Ω′
g̃2dξ .

1

(1 + |ζ|3|γ||ζ − γ|4)(1 + |ζ|2|ζ − γ|2)

∫
Ω′
|ξ|2dξ . (1 + |ζ|3|γ||ζ − γ|4)−1.

This establishes that

|S1| . (1 + |ζ||γ||ζ − γ|2)−1 = (1 + |ωl||ωs||ω−ls |2)−1.

For S2, we note that due to variable symmetry we have D2λḠ(m, s) =

D1λḠ(s,m) and since l ∈ A, then m ∈ Bc2R(l) is such that

|m| ≤ |l|+ c2R ≤ |l|(1 + c2(1 +
√

2)) ≤ 3

2
(1 + c2(1 +

√
2))|s|

=⇒ |s| ≥ 2

3(1 + c2(1 +
√

2))
|m|.

As a result, with c2 = 1
6 we have that s ∈ Λ \ Ω1(m) and the result of Lemma 4.4.1

applies, thus D2λḠ(m, s) . |ωs|−1|ωms|−1. We can exploit this fact by summing the
first term by parts and hence consider

S2 = S2a + S2b :=
∑
m∈Λ

−Div
(
Dη(m)�ADτGhom(m− l)

)
D2λḠ(m, s)

+
∑
m∈Λ

∑
ρ∈R

Dρη(m)DρDτGhom(m− l)A1ρD2λḠ(m, s),

where Dη(m)�ADτGhom(m− l) =
(
Dρη(m)A1ρDτGhom(m− l)

)
ρ∈R.

For S2b we note that since |Dη(m)| . R−1 = |ωl|−1|ω−ls |−1, we can estimate

|S2b| . (1 + |ωl||ω−ls |)−1
∑
m∈Al

(1 + |m− l|2)−1(1 + |ωs||ω−ms|)−1,

where again Al = Bc2R(l) \Bc1R(l). With the substitution ξ = ωm and the identity
in (4.3.1), we thus obtain

|S2b| . (1 + |ζ||ζ − γ|)−1

∫
ω(Al)

|ξ|2
(1 + |γ||ξ − γ|)(1 + |ξ − ζ|2|ξ + ζ|2)

dξ

=:

∫
ω(Al)

f̂1(ξ)dξ

We carve ω(Al) into Uγ := B|ζ−γ|/2(γ) ∩ ω(Al) and ω(Al) \Uγ , noting that in some
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cases Uγ can be empty, but it does not affect the argument.
We first note that∫
Uγ

f̂1dξ .
|ζ|2

(1 + |ζ|3|ζ − γ|3)

∫
Uγ

1

1 + |γ||ξ − γ|dξ . (1 + |ζ||γ||ζ − γ|2)−1.

On the other hand, if ξ ∈ Al \ Uγ , then |ξ − γ| & |ζ − γ|. Furthermore, (4.3.1)
together with how Al is defined implies that

|ξ − ζ||ξ + ζ| ∼ R = |ωl|ω−ls | = |ζ||ζ − γ|. (4.4.22)

Hence∫
ω(Al)\Uγ

f̂1dξ .
1

(1 + |ζ|3|γ||ζ − γ|4)

∫
ω(Al)\Uγ

|ξ|2 . (1 + |ζ||γ||ζ − γ|2)−1.

As a result
|S2b| . (1 + |ζ||γ||ζ − γ|2)−1.

For S2a, when we apply the discrete divergence operator, we use the product
rule discussed in (4.4.4) to obtain two sub-terms

S
(i)
2a :=

∑
m∈Λ

∑
ρ∈R

Dρη(m)
(
AρDτGhom(m− ρ− l)−AρDτGhom(m− l)

)
D2λḠ(m, s)

and

S
(ii)
2a :=

∑
m∈Λ

∑
ρ∈R

(Dρη(m− ρ)−Dρη(m))AρDτGhom(m− ρ− l)D2λḠ(m, s).

In the first one the additional derivative goes onto DτGhom(m− l) and thus this can
be estimated in the same way as S2b.

For the other sub-term we have the additional derivative on the cut-off func-
tion, which leads us to exploit |D2η(m)| . R−2 . (1 + |ωl|2|ω−ls |2)−1. Hence

|S(ii)
2a | . (1 + |ωl|2|ω−ls |2)−1

∑
m∈Al

(1 + |m− l|)−1(1 + |ωs||ωms|)−1.
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Similarly to how we argued for S2b, we write

|S(ii)
2a | . (1 + |ζ|2|ζ − γ|2)−1

∫
ω(Al)

|ξ|2
(1 + |γ||ξ − γ|)(1 + |ξ − ζ||ξ + ζ|)dξ

=:

∫
ω(Al)

f̂2(ξ, ζ, γ)dξ

Looking at sets Uγ and ω(Al) \ Uγ separately again, we get that∫
Uγ

f̂2dξ .
|ζ|2

(1 + |ζ|3|ζ − γ|3)

∫
Uγ

1

1 + |γ||ξ − γ|dξ . (1 + |ζ||γ||ζ − γ|2)−1,

whereas, again exploiting (4.4.22), we have∫
ω(Al)\Uγ

f̂2dξ .
1

(1 + |ζ|3|γ||ζ − γ|4)

∫
ω(Al)\Uγ

|ξ|2 . (1 + |ζ||γ||ζ − γ|2)−1.

Hence
|S(ii)

2a | . (1 + |ζ||γ||ζ − γ|2)−1,

which concludes the result.

Case 2: supp η ∩ Γ 6= ∅.
Looking at the corresponding proof in Lemma 4.4.1, we notice that the result will
follow from the same manifold M construction introduced in (4.4.13), as long as
we correctly estimate J3(v+) and J4(v+), defined in (4.4.21), with a formula for v+

given in (4.4.18). We proceed as follows.
We first note that

J3(v+) .
∑
m∈Γl

(1 + |ωm|3|ωs||ω−ms|2)−1(1 + |ω−ml|2|ω+
ml|2)−1 =:

∑
m∈Γl

g3(m)

and thus
J3(v+) . g3(l)1Γl(l) + g3(s)1Γl(s) +

∫
Γ̃l

g3(x)dx,

where
g3(l) = (1 + |ωl|3|ωs|ω−ls |2)−1

and
g3(s)1Γl(s) = (1 + |ωs|2|ω−ls |2)−1 . (1 + |ωl||ωs||ω−ls |2)−1.
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For the integral term we argue that∫
Γ̃l

g3(x)dx =

∫
ω(Γ̃l)

|ξ|
(1 + |ξ|3|γ||ξ − γ|2)(1 + |ξ − ζ|2||ξ + ζ|2)

dξ =:

∫
ω(Γ̃l)

g̃3(ξ)dξ.

As before we now look at regions defined in (4.4.19) and observe that∫
Γγ

g̃3dξ .
|ζ|

1 + |ζ|2|ζ − γ|2
∫

Γγ

1

1 + |ζ|3|γ||ξ − γ|2dξ . (1 + |ζ|4|γ||ζ − γ|2)−1,

∫
Γζ

g̃3dξ .
|ζ|

1 + |ζ|3|γ||ζ − γ|2
∫

Γζ

1

1 + |ζ|2|ξ − ζ|2dξ . (1 + |ζ|4|γ||ζ − γ|2)−1

∫
Γ′l

g̃3dξ .
1

(1 + |ζ|2|ζ − γ|2)(1 + |ζ|3|γ||ζ − γ|2)

∫
Γγ

|ξ|dξ . (1 + |ζ|4|γ||ζ − γ|3)−1,

thus allowing us to conclude that

J3(v+) . (1 + |ζ||ω|ζ − γ|2)−1 = (1 + |ωl||ωs||ω−ls |2)−1.

Finally, a corresponding argument can be employed to establish that

J4(v+) . (1 + |ζ||γ||ζ − γ|2)−1 = (1 + |ωl||ωs||ω−ls |2)−1,

which implies |S1| . (1 + |ωl||ωs||ω−ls |2)−1 and concludes the proof.

4.4.4 Preliminary norm estimates for the mixed second derivative
of Ḡ

The procedure described in Lemma 4.4.2 cannot be employed if we are too close or too
far away from the origin relative to s. It turns out, however, that for l ∈ Ω1(s)∪Ω2(s)

one can obtain a preliminary result in the form of norm estimates.

Lemma 4.4.3. For any s with |s| large enough and τ ∈ R(s), the function ḡ(m, s) :=

D2τ Ḡ(m, s) satisfies

‖D1ḡ(·, s)‖`2(Ω1(s)) . |ωs|−2 and ‖D1ḡ(·, s)‖`2(Ω2(s)) . |ωs|−2.

Proof. We begin by noting that the equation that ḡ satisfies is

Hḡ(m, s) = −Hĝ(m, s) for m ∈ Ω1(s) ∪ Ω2(s)

where ĝ(m, s) := D2τ Ĝ(m, s). This point-wise equation is obtained from (4.3.15)
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after testing with v(l) = δlm (the Kronecker delta) and noting that inside Ωi(s) we
are away from s.

We multiply both sides by ḡ(·, s)η2
1 or ḡ(·, s)η2

2 and sum over m. The cut-
off function ηi is defined to be identically 1 inside Ωi(s) and to go smoothly and
monotonically to zero over an annulus of radius c3|s| where the choice of c3 ensures
that dist(supp ηi, s) ∼ |s|. A particular choice of η1 and η2 that works is as follows:
η1(m) = 1 for m ∈ B5|s|/8(0) and η1(m) = 0 for m ∈ Λ \ B6|s|/8(0). Similarly,
η2(m) = 1 for m ∈ Λ \ B11|s|/8(0) and η2(m) = 0 for m ∈ B10|s|/8(0). Thus c3 = 1

8

and the aforementioned annuli are still at least |s|4 away from s.
Note that as a result we have |Djηi| . |s|−j = |ωs|−2j and also that it is

non-zero only in the region where the result from Lemma 4.4.2 can be applied. It
can be essentially thought of as imposing a boundary condition on a discrete variant
of the Poisson equation on Ωi(s). Following summation by parts on the left-hand
side we get∑

m∈Λ

D1ḡ(m, s) ·D1[ḡ(m, s)η2
i (m)] = −

∑
m∈Λ

(Hĝ(m, s)) ḡ(m, s)η2
i (m). (4.4.23)

Furthermore, we can rewrite the left-hand side of (4.4.23) due to the discrete product
rule identities discussed in (4.4.4) which establish that any two f, g : Λ→ R satisfy

Dρ[fg](m) = f(m+ ρ)Dρg(m) + f(m)Dρg(m)

= g(m+ ρ)Dρf(m) + g(m)Dρf(m),

which implies that (suppressing the s-dependence of ḡ and i-dependence of η in
notation for brevity)

Dρḡ(m) ·Dρ[(ḡη)η](m) =Dρḡ(m) · [ḡ(m+ ρ)η(m+ ρ)Dρη(m) + η(m)Dρ[ḡη](m)]

=Dρḡ(m)Dρη(m)ḡ(m+ ρ)η(m+ ρ)

+Dρḡ(m)2η(m)η(m+ ρ) +Dρḡ(m)η(m)ḡ(m)Dρη(m).

A similar calculation reveals that

D[ḡη](m) ·D[ḡη](m) = Dρḡ(m) ·Dρ[(ḡη)η](m) +Dρη(m)2ḡ(m+ ρ)ḡ(m),
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which allows us to rewrite (4.4.23) as

‖D1[ḡ(·, s)ηi]‖2`2 =−
∑
m∈Λ

(Hĝ(m, s)) ḡ(m, s)η2
i (m) (4.4.24)

+
∑
m∈Λ

∑
ρ∈R

(Dρηi(m))2 ḡ(m, s)ḡ(m+ ρ, s)

and subsequently we hope to estimate the right-hand side, in particular noting that
|ḡ(m+ ρ, s)| ∼ |ḡ(m, s)| inside supp η1 ∪ supp η2.

We first deal with terms that are not on the crack surface. For m 6∈ Γ we
know that H coincides with the homogeneous Hessian operator H̃ defined in (4.4.1),
thus a Taylor expansion of

Hĝ(m, s) =
∑
ρ∈R

D1ρĝ(m− ρ, s)−D1ρĝ(m, s)

up to fourth order, as calculated explicitly in the proof of [19, Theorem 5.6], together
with the fact that Ĝ(, ·, s) solves the Laplace equation away from s we can conclude
that

|Hĝ(m, s)| . ‖∇4
m∇sĜ(·, s)‖L∞(B1/2(m)).

Hence, bearing in mind (4.3.12),

|Hĝ(m, s)| . h
(a)
4 (m, s) + h

(b)
4 (m, s).

If, on the other hand, m ∈ Γ, then a careful examination of terms in Hĝ(m)

reveals that
Hĝ(m, s) = 2

∑
ρ∈R(m)

D1ρĝ(m, s).

Applying a Taylor expansion, this implies

|Hĝ(m, s)| .

∣∣∣∣∣∣
∑

ρ∈R(m)

(
2∇mḡ(m, s) · ρ+∇2

mĝ(m, s)[ρ, ρ] +
1

3
∇3
mḡ(m, s)[ρ, ρ, ρ]

)∣∣∣∣∣∣
+ ‖∇4

m∇sĜ(·, s)‖L∞(B1/2(m))

. ‖∇mḡ(m, s) · e2‖L∞(B1/2(m)) + ‖∇4
m∇sĜ(·, s)‖L∞(B1/2(m)), (4.4.25)

where the final line follows from the fact that

m ∈ Γ± =⇒
∑

ρ∈R(m)

2∇mḡ(m, s) · ρ = ±2∇mḡ(m, s) · e2,
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m ∈ Γ± =⇒
∑

ρ∈R(m)

∇2
mḡ(m, s)[ρ, ρ] = 2∆mḡ(m, s)−∇2

mḡ(m, s)[±e2,±e2]

= −∇2
mḡ(m, s)[±e2,±e2],

since ḡ(m, s) solve the Laplace equation away from s. Finally,

m ∈ Γ± =⇒
∑

ρ∈R(m)

∇3
mḡ(m, s)[ρ, ρ, ρ] = ±1

3
∇3
mḡ(m, s)[±e2,±e2,±e2].

The second term in 4.4.25 can be estimated as in (4.3.12). For the first term,
using the boundary condition in (4.3.6), we can Taylor-expand this around m0 ∈ Γ

vertically aligned with m, allowing us to gain one extra derivative. As a result

‖∇mḡ(m, s) · e2‖L∞(B1/2(m)) . h
(a)
2 (m) + h

(b)
2 (m).

For i = 1 we note that in the first term on the right-hand side of (4.4.24) we
only sum over m ∈ B 3|s|

4

(0), thus Lemma 4.4.1 ensures that ḡ(m, s) . |ωs|−1|ω−ms|−1.

Furthermore, recalling (4.3.1), we can rewrite |ω−ms| = |m − s||ω+
ms|−1 and exploit

the fact in the region of interest |m− s| & |s| = |ωs|2 and |ω+
ms| ≤ |ωm|+ |ωs| . |ωs|.

Finally, we note that due to placing the defect core at the origin, we always have
m ∈ Λ =⇒ |m| > 1/

√
2. Thus we can estimate∑

m∈B 3|s|
4

(0)

h
(a)
4 (m, s)|ḡ(m, s)| .

∑
m∈B 3|s|

4

(0)

(1 + |ωm|7|ωs||ω−ms|2)−1(1 + |ω−ms|ωs|)−1

(4.4.26)

. |ωs|−5
∑
m∈Λ

|ωm|−7 . |ωs|−5,

∑
m∈B 3|s|

4

(0)

h
(b)
4 (m, s)|ḡ(m, s)| .

∑
m∈B 3|s|

4

(0)

(1 + |ωm|4|ωs||ω−ms|5)−1(1 + |ω−ms||ωs|)−1

(4.4.27)

. |ωs|−8
∑

m∈B 3|s|
4

(0)

|ωm|−4 . |ωs|−8 log |ωs|,
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∑
m∈B 3|s|

4

(0)∩Γ

h
(a)
2 (m, s)|ḡ(m, s)| (4.4.28)

.
∑

m∈B 3|s|
4

(0)∩Γ

(1 + |ωm|3|ωs||ω−ms|2)−1(1 + |ω−ms||ωs|)−1

. |ωs|−5
∑

m∈B 3|s|
4

(0)∩Γ

|ωm|−3 . |ωs|−5,

∑
m∈B 3|s|

4

(0)∩Γ

h
(b)
2 (m, s)|ḡ(m, s)| (4.4.29)

.
∑

m∈B 3|s|
4

(0)∩Γ

(1 + |ωm|2|ωs||ω−ms|3)−1(1 + |ω−ms||ωs|)−1

. |ωs|−6
∑

m∈B 3|s|
4

(0)∩Γ

|ωm|−2 . |ωs|−6 log |ωs|.

Similarly, for the boundary term we note that if i = 1 then we only sum over
m ∈ B 3|s|

4

(0) \B 5|s|
8

(0) and we can estimate

∑
m∈Λ

∑
ρ∈R(m)

(Dρηi(m)ḡ(m, s))2 . |ωs|−8
∑

m∈B 3|s|
4

(0)\B 5|s|
8

(0)

1 . |ωs|−4. (4.4.30)

For i = 2 the estimate of boundary term in (4.4.30) still holds with the only
difference being that we now sum over m ∈ B 11|s|

8

(0) \B 5|s|
4

(0). On the other hand,
as now we sum over m ∈ Λ \ B 5|s|

4

(0), the result of Lemma 4.4.1 does not apply
to ḡ(m, s). However, we can reproduce the proof of Lemma 4.4.1 using a cut-off
function η, as introduced at the beginning of Section 4.4, with R = |s| and c1 = 1

2

and c2 = 3
4 . One can readily check that the argument for S1 remains unaffected,

whereas the for S2 a general result for this type of argument is that |S2| . R−1 and
in this case R−1 = |s|−1 = |ωs|−2. Thus we obtain

|ḡ(m, s)| = |D1τ Ḡ(s,m)| . (1 + |ωs||ω−ms|+ |ωs|2)−1 . (1 + |ωs|2)−1,

since |ω−ms| = |m − s||ω+
ms| & |m||(|ωm| + |ωs|)−1 & |ωm| & |ωs|, as in the region of

interest |m| (= |ωm|2) and |m− s| are comparable and |m− s| & |s|.
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Thus we can estimate∑
m∈Λ\B 5|s|

4

(0)

(
h

(a)
4 (m, s

)
|ḡ(m, s)| (4.4.31)

.
∑

m∈Λ\B 5|s|
4

(0)

(1 + |ωm|7|ωs|1|ω−ms|2)−1(1 + |ωs|2)−1

. |ωs|−5
∑

m∈Λ\B 5|s|
4

(0)

|ωm|−7 . |ωs|−5

∫ ∞
5|s|
4

r−7/2rdr . |ωs|−8.

Analogous calculations result in∑
m∈Λ\B 5|s|

4

(0)

(
h

(b)
4 (m, s

)
|ḡ(m, s)| . |ωs|−8, (4.4.32)

∑
m∈Λ\B 5|s|

4

(0)∩Γ

(
h

(a)
2 (m, s

)
|ḡ(m, s)| . |ωs|−6, (4.4.33)

∑
m∈Λ\B 5|s|

4

(0)∩Γ

(
h

(b)
2 (m, s

)
|ḡ(m, s)| . |ωs|−6. (4.4.34)

Since the particular choice of the cut-off functions specified at the start of
the proof implies that

Ωi(s) ⊂ {m ∈ Λ : ηi(m) = 1},

we have thus established that

‖Dḡ(·, s)‖`2(Ωi(s)) ≤ ‖D[ḡ(·, s)ηi]‖`2 . |ωs|−2.

4.4.5 Improving norm estimates for mixed second derivative of Ḡ
through bootstrapping

Arguments in Sections 4.4.2-4.4.4 together provide the preliminary suboptimal esti-
mates of Ḡ over the whole space. Together with Lemma 4.3.2, they make G = Ĝ + Ḡ
a partially-functioning technical tool for estimating the decay of discrete functions
defined on Ḣ1 in a crack geometry. In particular, we can use it to improve the decay
estimates of Ḡ to get better norm estimates over Ωi.

By looking at the estimates (4.4.26)-(4.4.34), it is evident that we can improve
these sub-optimal norm estimates as long as we are able to get a better rate in
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(4.4.30), with the summation over an annulus near the boundary of Ω1(s), namely
for m ∈ B 3|s|

4

(0) \B 5|s|
8

(0) and likewise over an annulus near the boundary of Ω2(s),
namely for m ∈ B 11|s|

8

(0) \ B 5|s|
4

(0). This is possible if, instead of using a cut-off

function and the homogeneous lattice Green’s function Ghom, we employ G.
Lemma 4.4.4. Let s̃ ∈ Λ be such that |s̃| is large enough. If m ∈ Λ is such that
m ∈ B 3|s̃|

4

(0) \B 5|s̃|
8

(0) or m ∈ B 11|s̃|
8

(0) \B 5|s̃|
4

(0), then

|ḡ(m, s̃)| . |ω(s̃)|−3,

where ḡ(m, s̃) = D2τ Ḡ(m, s̃).

Proof. Since ḡ(m, s̃) = D1τ Ḡ(s̃,m), we change the notation to keep it in line with
previous proofs by letting l = s̃ and m = s. Consequently we will in fact estimate
D1τ Ḡ(l, s) for l ∈ B 8|s|

5

(0)\B 4|s|
3

(0) and l ∈ B 4|s|
5

(0)\B 8|s|
11

(0) with the hope that we

can conclude that D1τ Ḡ(l, s) . |ωl|−3. With G and its suboptimal decay established,
we can write

D1τ Ḡ(l, s) =
∑
m∈Λ

(HD2τG(m, l)) Ḡ(m, s) =
∑
m∈Λ

D1Ḡ(m, s) ·D1g(m, l),

where g = ĝ + ḡ defined in the proof of Lemma 4.4.3. Noting that both ĝ, ḡ ∈ Ḣ1,
we exploit the fact that Ḡ satisfies (4.3.15) and, similarly to the strategy employed
in the proof of Lemma 4.4.1, we conclude that

|D1τ Ḡ(l, s)| .
4∑
i=1

Ii(ĝ) + Ii(ḡ), (4.4.35)

where the terms are as in (4.3.13)-(4.3.14). Recalling that Lemma 4.3.2 establishes
that |D1ρĝ(m, l)| = |D1ρD2τ Ĝ(m, l)| . (1 + |ωm||ωl||ω−ml|2)−1 and noting the fact
that in the region of interest |l − s|, |l|, and |s| are all comparable, we can directly
estimate four summands corresponding to this term arguing as in the proof of Lemma
4.4.1.

We begin by writing

I1(ĝ) .
∑
m∈Λ

(1 + |ωm|5|ω−ms|)−1(1 + |ωm||ωl||ω−ml|2)−1 =:
∑
m∈Λ

h1(m).

We first observe that ∑
m∈Λ

h1(m) . h1(l) + h1(s) +

∫
D
h̃1(ξ)dξ,
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where

h̃1(ξ) :=
|ξ|2

(1 + |ξ|5|ξ − γ|)(1 + |ξ||ζ||ξ − ζ|2)

and
D := R2

+ \ (Bε∗(0) ∪B 1
|ζ|

(ζ) ∪B 1
γ
(γ)),

with ε∗ =
√

1/
√

2. The fact that we exclude balls of radii 1
|ζ| and

1
|γ| is as in (4.4.8).

It is clear to see that

h1(l) = (1 + |ωl|5|ω−ls |)−1 . |ωl|−6,

h1(s) = (1 + |ωs||ωl||ω−ls |2)−1 . |ωl|−4

and away from the spikes we would like to estimate the integral term separately for
regions close to the origin, γ and ζ separately.

To this end, we define radii

R0 := min{|γ|, |ζ|}, (4.4.36a)

Rγ := min{|γ|, |γ − ζ|}, (4.4.36b)

Rζ := min{|ζ|, |ζ − γ|}, (4.4.36c)

R1 := max{|ζ|, |γ|}+
max{Rζ , Rγ}

2
(4.4.36d)

and look at

Ω0 := (D ∩BR0
2

(0)), (4.4.37a)

Ωγ := (D ∩BRγ
2

(γ)), (4.4.37b)

Ωζ := (D ∩BRζ
2

(ζ)), (4.4.37c)

Ω1 := (D ∩BR1(0)) \ (Ω0 ∪ Ωγ ∪ Ωζ), (4.4.37d)

Ω′ := (D \BR1(0)). (4.4.37e)

Exploiting the spatial properties of each of these sets and that |γ|, |ζ| and |γ− ζ| are
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all comparable, we can conclude that

∫
Ω0

h̃1dξ .
∫

Ω0

|ξ|2
1 + |ξ|6|γ|4dξ . |γ|

−4

∫ R0
2

ε∗

1

r3
dr . |ζ|−4,

∫
Ωγ

h̃1dξ . |γ|−2

∫
Ωγ

1

1 + |γ|5|ξ − γ|dξ . |γ|
−2

∫ Rγ
2

1
|γ|

r

1 + |γ|5rdr . |γ|
−7Rγ . |ζ|−6,

∫
Ωζ

h̃1dξ . |γ|−4

∫
Ωζ

1

1 + |γ|2|ξ − ζ|2dξ . |γ|
−4

∫ Rζ
2

1
|ζ|

r

1 + |γ|2r2
dr

. |γ|−6 log(Rζ) . |ζ|−6 log |ζ|,∫
Ω1

h̃1dξ . |γ|−4

∫
Ω1

|ξ|−4dξ . |γ|−4

∫ R1

R0
2

1

r3
dr . |ζ|−6,∫

Ω′
h̃1dξ . |γ|−4

∫
Ω′
|ξ|−4dξ . |γ|−4

∫ ∞
R1

1

r3
dr . |ζ|−6.

Likewise for the second term we begin by saying

I2(ĝ) .
∑
m∈Λ

(1 + |ωm|3|ω−ms|3)−1(1 + |ωm||ωl||ω−ml|2)−1 =:
∑
m∈Λ

h2(m)

and ∑
m∈Λ

h2(m) . h2(l) + h2(s) +

∫
D
h̃2dξ,

where

h̃2(ξ) :=
|ξ|2

(1 + |ξ|3|ξ − γ|3)(1 + |ξ||ζ||ξ − ζ|2)
.

It is clear that

h2(l) = (1 + |ωl|3|ω−ls |3)−1 . |ωl|−6,

h2(s) = (1 + |ωs||ωl||ω−ls |2)−1 . |ωl|−4
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and for the integral term we look at regions defined in (4.4.37) again to obtain

∫
Ω0

h̃2dξ .
∫

Ω0

|ξ|2
1 + |ξ|4|γ|6dξ . |γ|

−6

∫ R0
2

ε∗

1

r
dr . |ζ|−6 log |ζ|,

∫
Ωγ

h̃2dξ . |γ|−2

∫
Ωγ

1

1 + |γ|3|ξ − γ|3dξ . |γ|
−2

∫ Rγ
2

1
|γ|

r

1 + |γ|3r3
dr . |ζ|−4

∫
Ωζ

h̃2dξ . |γ|−4

∫
Ωγ

1

1 + |γ|2|ξ − ζ|2dξ . |γ|
−4

∫ Rζ
2

1
|ζ|

r

1 + |γ|2r2
dr

. |γ|−6 log(Rζ) . |ζ|−6 log |ζ|,∫
Ω1

h̃2dξ . |γ|−6

∫
Ω1

|ξ|−2dξ . |γ|−6

∫ R1

R0
2

1

r
dr . |ζ|−6 log |ζ|,∫

Ω′
h̃2dξ . |γ|−1

∫
Ω′
|ξ|−7dξ . |γ|−1

∫ ∞
R1

1

r6
dr . |ζ|−6.

The same strategy applies to the boundary terms, as we can write

I3(ĝ) .
∑
m∈Γ

(1 + |ωm|3|ω−ms|1)−1(1 + |ωm||ωl||ω−ml|2)−1 =:
∑
m∈Γ

h3(m),

and ∑
m∈Λ

h3(m) . h3(l)1Γ(l) + h3(s)1Γ(s) +

∫
D
h̃3dξ,

where
h̃3(ξ) :=

|ξ|
(1 + |ξ|3|ξ − γ|)(1 + |ξ||ζ||ξ − ζ|2)

.

It is clear that

h3(l) = (1 + |ωl|3|ω−ls |)−1 . |ωl|−4,

h3(s) = (1 + |ωs||ωl||ω−ls |2)−1 . |ωl|−4
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and also∫
Ω0∩ω(Γ)

h̃3dξ .
∫

Ω0∩ω(Γ)

|ξ|
1 + |ξ|4|γ|4dξ . |γ|

−4

∫ R0
2

ε∗

1

r3
dr . |ζ|−4,

∫
Ωγ∩ω(Γ)

h̃3dξ . |γ|−3

∫
Ωγ∩ω(Γ)

1

1 + |γ|3|ξ − γ|dξ . |γ|
−3

∫ Rγ
2

1
|γ|

1

|γ|3rdr

. |ζ|−6 logRγ . |ζ|−6 log |ζ|,∫
Ωζ∩ω(Γ)

h̃3dξ . |γ|−3

∫
Ωζ∩ω(Γ)

1

1 + |γ|2|ξ − ζ|2dξ . |γ|
−3

∫ Rζ
2

1
|ζ|

1

|γ|2r2
dr . |ζ|−4,

∫
Ω1∩ω(Γ)

h̃3dξ . |γ|−4

∫
Ω1∩ω(Γ)

|ξ|−3dξ . |γ|−4

∫ R1

R0
2

1

r3
dr . |ζ|−6,∫

Ω′∩ω(Γ)
h̃3dξ . |γ|−4

∫
Ω′∩ω(Γ)

|ξ|−3dξ . |γ|−4

∫ ∞
R1

1

r3
dr . |ζ|−6.

Finally,

I4(ĝ) .
∑
m∈Γ

(1 + |ωm|2|ω−ms|2)−2(1 + |ωm||ωl||ω−ml|2)−1 =:
∑
m∈Γ

h4(m),

and ∑
m∈Λ

h4(m) . h4(l)1Γ(l) + h4(s)1Γ(s) +

∫
D
h̃4dξ,

where
h̃4(ξ) :=

|ξ|
(1 + |ξ|2|ξ − γ|2)(1 + |ξ||ζ||ξ − ζ|2)

.

It is clear that

h4(l) = (1 + |ωl|2|ω−ls |2)−1 . |ωl|−4,

h4(s) = (1 + |ωs||ωl||ω−ls |2)−1 . |ωl|−4
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and also∫
Ω0∩ω(Γ)

h̃4dξ .
∫

Ω0∩ω(Γ)

|ξ|
1 + |ξ|3|γ|5dξ . |γ|

−5

∫ R0
2

ε∗

1

r2
dr . |ζ|−5,

∫
Ωγ∩ω(Γ)

h̃4dξ . |γ|−3

∫
Ωγ∩ω(Γ)

1

1 + |γ|2|ξ − γ|2dξ . |γ|
−3

∫ Rγ
2

1
|γ|

1

|γ|2r2
dr . |ζ|−4,

∫
Ωζ∩ω(Γ)

h̃4dξ . |γ|−3

∫
Ωζ∩ω(Γ)

1

1 + |γ|2|ξ − ζ|2dξ . |γ|
−3

∫ Rζ
2

1
|ζ|

1

|γ|2r2
dr . |ζ|−4,

∫
Ω1∩ω(Γ)

h̃4dξ . |γ|−5

∫
Ω1∩ω(Γ)

|ξ|−2dξ . |γ|−5

∫ R1

R0
2

1

r2
dr . |ζ|−6,∫

Ω′∩ω(Γ)
h̃4dξ . |γ|−5

∫
Ω′∩ω(Γ)

|ξ|−2dξ . |γ|−5

∫ ∞
R1

1

r2
dr . |ζ|−6.

Since in each estimate we get at least |ζ|−4 = |ωl|−4, we can conclude that

4∑
i=1

Ii(ĝ) . |ωl|−4.

For the other four terms on the right-hand side of (4.4.35), in light of Lemma
4.4.3, we look separately at the summation over Ω1(l), Ω2(l) and A(l). The first
two we investigate in detail, but for the sum over A(l), we simply note that in there
we have a point-wise estimate D1ρḡ(m, l) . (1 + |ωm||ωl||ω−ml|2)−1, as established in
Lemma 4.4.2, so the above estimates translate verbatim and we get

4∑
i=1

Ii(ḡ,A(l)) . |ωl|−4,

where

I1(v,A(l)) :=
∑

b(m,ρ)6⊂Γ
m∈A(l)

g
(a)
3 (m)|Dρv(m)|, I2(v,A(l)) :=

∑
b(m,ρ)6⊂Γ
m∈A(l)

g
(b)
3 (m)|Dρv(m)|

(4.4.38)
and

I3(v,A(l)) :=
∑

b(m,ρ)⊂Γ
m∈A(l)

g
(a)
2 (m)|Dρv(m)|, I4(v,A(l)) :=

∑
b(m,ρ)⊂Γ
m∈A(l)

g
(b)
2 (m)|Dρv(m)|,

(4.4.39)
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Due to the spatial restriction on l relative to s, we have that m ∈ Ωi(l) =⇒
|m − s| & |s|, which also implies that |ω−ms| = |m − s||ω+

ms| & |ωs|2(|ωm| + |ωs|)−1.
As a result we can conclude that

I1(ḡ) .
2∑
i=1

 ∑
m∈Ωi(l)

|ωm|−10|ω−ms|−2

1/2

‖Dḡ‖`2(Ωi(l)) + |ωl|−4 . |ωl|−3.

An analogous argument for the remaining terms reveals that

I2(ḡ) .
2∑
i=1

 ∑
m∈Ωi(l)

|ωm|−6|ω−ms|−6

1/2

‖Dḡ‖`2(Ωi(l)) + |ωl|−4 . |ωl|−4,

I3(ḡ) .
2∑
i=1

 ∑
m∈Ωi(l)

|ωm|−6|ω−ms|−2

1/2

‖Dḡ‖`2(Ωi(l)) + |ωl|−4 . |ωl|−3,

I4(ḡ) .
2∑
i=1

 ∑
m∈Ωi(l)

|ωm|−4|ω−ms|−4

1/2

‖Dḡ‖`2(Ωi(l)) + |ωl|−4 . |ωl|−4.

We have thus estimated each summand in (4.4.35) and this concludes the proof.

As a result, we can improve the norm estimates in Lemma 4.4.3 slightly.

Lemma 4.4.5. For any s with |s| large enough and τ ∈ R(s), the function ḡ(m, s) :=

D2τ Ḡ(m, s) satisfies

‖Dḡ(·, s)‖`2(Ω1) . |ωs|−5/2 and ‖Dḡ(·, s)‖`2(Ω2) . |ωs|−3.

Proof. With Lemma 4.4.4 in hand, the estimate (4.4.30) now becomes∑
m∈Λ

∑
ρ∈R(m)

(Dρηi(m)ḡ(m, s))2 . |ωs|−6, (4.4.40)

which is enough to conclude the result, as now the terms with the lowest rate of
decay are given by (4.4.26) and (4.4.28), but these only apply to Ω1(s).

To proceed further we improve upon the estimates in (4.4.26) and (4.4.28).

Lemma 4.4.6. Let s ∈ Λ be such that |s| is large enough. If m ∈ Λ is such that
m ∈ B 3|s|

4

(0) then

|ḡ(m, s)| . |ωs|−5/2.

86



Proof. Proceeding as in Lemma 4.4.4, we will estimate D1τ Ḡ(l, s) for l ∈ Λ\B 4|s|
3

(0),
which can be achieved by arguing that

|D1τ Ḡ(l, s)| .
4∑
i=1

Ii(ĝ) + Ii(ḡ), (4.4.41)

where the terms are as in (4.3.13)-(4.3.14). The terms corresponding to ĝ can be
estimated as in Lemma 4.4.4, with the only difference being that we longer have
|ζ| ∼ |γ|, but now |ζ| & |γ|. We still have that |ζ| ∼ |ζ − γ|. It can be thus verified
by redoing the estimates from Lemma 4.4.4 that in fact

4∑
i=1

Ii(ĝ) . |ζ|−3 = |ωl|−3.

For the other four terms we can still write, e.g.

I1(ḡ) .
2∑
i=1

 ∑
m∈Ωi(l)

(1 + |ωm|−5|ω−ms|−1)−2

1/2

‖Dḡ‖`2(Ωi(l)) + |ωl|−4,

but since as |l| grows larger, we eventually have s ∈ Ω1(l), it implies that the
summation over Ω1(l) is O(1), thus we can only rely on the result of Lemma 4.4.5,
which tells us that ‖Dḡ‖`2(Ω1(l)) . |ωl|−5/2 and so it easy to see that we can only
conclude that

4∑
i=1

Ii(ḡ) . |ωl|−5/2,

thus giving us the result of the lemma.

Lemma 4.4.7. For any s with |s| large enough and τ ∈ R(s), and any δ > 0, the
function ḡ(m, s) := D2τ Ḡ(m, s) satisfies

‖Dḡ(·, s)‖`2(Ω1) . |ωs|−3+δ.

Proof. The result of Lemma 4.4.6 in particular implies that the terms (4.4.26) and
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(4.4.28) can now be estimated, respectively, by∑
m∈B 3|s|

4

(0)

h
(a)
4 (m, s)|ḡ(m, s)| .

∑
m∈B 3|s|

4

(0)

(1 + |ωm|7|ωs||ω−ms|2)−1(1 + |ωs|5/2)−1

(4.4.42)

. |ωs|−11/2
∑
m

|ωm|−7 . |ωs|−11/2,

∑
m∈B 3|s|

4

(0)∩Γ

h
(a)
2 (m, s)|ḡ(m, s)| .

∑
m∈B 3|s|

4

(0)∩Γ

(1 + |ωm|3|ωs||ω−ms|2)−1(1 + |ωs|)−5/2

(4.4.43)

. |ωs|−11/2
∑

m∈B 3|s|
4

(0)∩Γ

|ωm|−3 . |ωs|−11/2,

which in particular, repeating the argument in Lemma 4.4.5, implies that

‖Dḡ(·, s)‖`2(Ω1) . |ωs|−11/4.

We can thus redo the argument in Lemma 4.4.6 to conclude that for |m| ≤ 3|s|
4 we

have |ḡ(m, s)| . |ωs|−11/4, which in turn implies that

‖Dḡ(·, s)‖`2(Ω1) . |ωs|−23/4.

It is hence apparent that we can repeat this process ad infinitum with the result
after k iterations given by

‖Dḡ(·, s)‖`2(Ω1) . |ωs|−d(k),

where

d(k) = 3

(
k∑
i=1

1

2i
+

b

2k

)
,

where b = 2
3 < 1, which ensures that d(k) < 3 ∀k ∈ N, but with limk→∞ d(k) = 3,

thus establishing the premise of the lemma.
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4.4.6 The concluding pointwise estimate for the mixed second
derivative of G

The bootstrapping argument of Section 4.4.5 ensures we can obtain a global pointwise
decay estimate for |D1D2Ḡ| and hence for |D1D2G| as well.

Lemma 4.4.8. If l ∈ Ω1(s) ∪ Ω2(s), τ ∈ R(l), and λ ∈ R(s), then for any δ > 0

|D1τD2λḠ(l, s)| . (1 + |ωl||ωs||ω−ls |2−δ)−1.

Proof. Consider s, l ∈ Λ such that |s| is large enough and |l| ≤ |s|
3 and |l| ≥ 4.

We create a cut-off function η that scales with |l|, namely we say η ≡ 1 in B |l|
4

(l)

and η ≡ 0 outside B |l|
2

(l) and smooth and decreasing in-between. Mimicking the
approach in Lemma 4.4.2, we conclude that

D1τD2λḠ(l, s) = S1 + S2

where

|S1| .
4∑
i=1

Ji(v) . (1 + |ωl||ωs||ω−ls |2)−1,

due to a verbatim repetition of the argument in Lemma 4.4.2. Likewise, we can
immediately conclude that

|S2| . |ωl|−2‖D1ḡ(·, s)‖`2(Al),

where ḡ(m, s) := D2τ Ḡ(m, s) and Al := B |l|
2

(l)\B |l|
4

(l). Crucially, we observe that in
the region under consideration we have B |l|

2

(l) ⊂ Ω1(s), thus allowing us to employ
Lemma 4.4.7 to conclude that

|S2| . (1 + |ωl|2|ωs|3−δ)−1 . (1 + |ωl|2|ωs||ω−ls |2−δ)−1,

where the final passage follows from the fact that we have |ωs| & |ω−ls | in the region
of interest.

We further note that this partial result together with the norm estimate over
Ω1(s) in Lemma 4.4.7 implies that if |l| ≤ 4, then

|D1τD2λḠ(l, s)| . |ωs|−3+δ . |ωs|−1|ω−ls |−2+δ,

which is precisely the result we want for l ≈ 0. Finally, for l such that |s|3 ≤ |l| ≤
|s|
2 ,

we simply note that the choice of regions Ω1(s),A(s), and Ω2(s) at the start of
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Section 4.4 was arbitrary in the sense that we can always choose different constants
with the |s| scaling and none of the arguments are affected except for having to
readjust the constants for |s| scaling of the cut-off functions used throughout. Thus
we have shown that if l ∈ Ω1(s) then

|D1τD2λḠ(l, s)| . (1 + |ωl||ωs||ω−ls |2−δ)−1,

which thanks to variable symmetry of Ḡ established in the proof of Theorem 4.2.2
implies the same for l ∈ Ω2(s).

We are at last ready to prove the main result of this section.

Proof Theorem 4.2.2, Part 2: decay estimate for the mixed derivative of G.
Lemma 4.4.2 and Lemma 4.4.8 together establish that for all l, s ∈ Λ and τ ∈ R(l),
λ ∈ R(s), we have for any δ > 0

|D1τD2λḠ(l, s)| . |ωl|−1|ωs|−1|ω−ls |−2+δ.

Lemma 4.3.2 provides the same result for Ĝ (including the case δ = 0) and since
G = Ĝ + Ḡ, then in fact

|D1τD2λG(l, s)| . |ωl|−1|ωs|−1|ω−ls |−2+δ,

which is what we set out to prove.

4.5 Discussion

In the concluding section of this chapter, we discuss to what extent the key ingre-
dients of the proofs presented in Sections 4.3 and 4.4 rely on the present setup of a
two-dimensional square lattice under nearest-neighbour interactions and anti-plane
displacements and whether we can adapt the proof to work in a greater generality.

We begin by noting that the construction of the Green’s function described in
Section 4.3 based upon coupling the discrete problem with its continuum counterpart
translates verbatim to certain more involved settings, for instance, in the anti-plane
setup, to any Bravais lattice under finite-range pair-potential, subject to prescribing
the correct constant CΛ in (4.3.6). In a general case of a vectorial model with
under finite-range interatomic potential, however, surface effects play a vital role,
potentially rendering the continuum approximation invalid near the crack surface.
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This has been discussed already in Chapter 3 in Section 3.6 and requires further
thought.

Similarly, most of the decay estimate proof detailed in Section 4.4 can be
easily extended to the general case, in particular the pointwise estimates in Sec-
tions 4.4.2-4.4.3 applied to the bulk (Case 1 in the proofs of Lemma 4.4.1 and
Lemma 4.4.2). This is because these arguments apply to the region where any
surface effects are negligible, as we effectively exclude a fixed crack-encompassing
infinite cone centered at origin.

However, in order to obtain norm estimates in Sections 4.4.4-4.4.5, which
translate verbatim to more complicated setups, one first needs to obtain pointwise
estimates of Sections 4.4.2-4.4.3 near the crack surface (Case 2 in the proofs of
Lemma 4.4.1 and Lemma 4.4.2). In this crucial step we rely on a construction of
a locally isomorphic mapping from the defective lattice to a homogeneous lattice,
which preserves the fact that Ḡ is a critical point of the associated energy-difference
functional.

A similar construction based on a different reflection can also be carried
out for the triangular lattice under NN interactions, but this approach is ill-suited
to arbitrary finite-range interactions. This is because as we enlarge the radius of
interaction, we increase the number of constraints required for the extended version
of Ḡ to remain a critical point of the corresponding extended functional, whereas
any argument based on reflection (possibly coupled with translation and scaling)
has a fixed number of degrees of freedom associated with it. For the same reason the
current framework only permits many-body terms in the interatomic potential that
do not contribute to the Hessian, which is why we restrict ourselves to pair-potentials
in the first place.
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Chapter 5

Cell size effects in atomistic crack
propagation

5.1 Introduction and notation

In this chapter we introduce a framework in which atomistic crack propagation can
be analysed. In particular, we move away from the small-loading regime of Chapter
3 and introduce the stress intensity factor k discussed in Section 2.4 as a variable
in the energy which was introduced in Section 2.5. Furthermore, in order to work
with a physically-realistic periodic bifurcation diagram, the interactions across the
crack are now included, as discussed in Section 2.1 (recall the notational conventions
introduced therein). This setup requires us to assume the premise of Theorem 2
(adjusted to the new setup), but, with a suitable adjustment in the assumption on
the interatomic potential V , as discussed in Section 2.3, the equivalents of Theorems
1 and 3 will be proven.

We are again interested in investigating cell size effects in the finite-domain
approximation under structural assumptions on the bifurcation diagram. In partic-
ular, Theorem 6 will be proven, as well as the superconvergence estimate (1.2.6).

The be precise, we consider the energy difference functional E : Ḣ1×R→ R
given by

E(u, k) =
∑
m∈Λ

V (D̃ûk(m) + D̃u(m))− V (D̃ûk(m)), (5.1.1)

where ûk was defined in (2.4.3). We recall from (2.1.3) that D̃ is the homogeneous
discrete gradient operator, thus interactions across the crack are now included. The
interatomic potential V was introduced in (2.3.1), and crucially, following the dis-
cussion in Section 2.3 and given that D̃ is employed, we note that (2.3.2) is assumed
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throughout this chapter, namely

there exists Rφ > 0 such that φ′(r) = 0 ∀r with |r| ≥ Rφ. (5.1.2)

Outline of the chapter: In Section 5.2 we introduce the bifurcation theory ma-
chinery, discuss the structural assumptions and state the main results. In Section
5.3 we consider the finite-domain approximation and provide rigorous statements of
results about the rate of convergence of the approximate bifurcation diagrams, as
introduced in (1.2.4)-(1.2.6). The numerical tests are presented in Section 5.4. The
discussion about the model is in Section 5.6. We conclude by gathering proofs in
Section 5.5.

5.2 Results about the model

We begin by stating the following result, which will be proven in Section 5.5.2.

Theorem 5.2.1. Let I be an open bounded interval in R+ that excludes the origin.
The energy difference functional E expressed in (5.1.1) is well-defined on Ḣ1× I and
is α-times continuously differentiable.

The inclusion of the stress intensity factor k ∈ I as a variable in the definition
of E allows us to employ bifurcation analysis to describe the propagation of the crack
as a series of bifurcations, which we view as corresponding to bond-breaking events.

The primary task of our analysis is to characterise the set of critical points
of the energy, S, defined as

S :=
{

(u, k) ∈ Ḣ1 × I
∣∣ δuE(u, k) = 0 ∈ (Ḣ1)∗

}
, (5.2.1)

where δuE : Ḣ1 × I → (Ḣ1)∗ is the partial Fréchet derivative given by

〈δuE(u, k), v〉 =
∑
m∈Λ

∇V (D̃ûk(m) + D̃u(m)) · D̃v(m).

For future reference, we summarize our notation for linear and multi-linear
forms, in particular defining the meaning of 〈δuE(u, k), v〉. For any n-linear form
L, we write L[v1, . . . , vn] to denote its evaluation at v1, . . . , vn and if m < n, then
L[v1, . . . , vm] is the (n−m)-linear form

(w1, . . . , wn−m) 7→ L[v1, . . . , vm, w1, . . . , wn−m].
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For the sake of readability and only when there is no risk of confusion, we often write
〈L, v1〉 for linear forms and 〈L1v1, v2〉 as well as L1v1 = L1[v1] for bilinear forms.

It is of particular interest to compute continuous paths contained in S, as it
allows to characterise the response of the model to variations in SIF. This is often
possible if we are able to identify one particular pair, say (ū0, k̄0) ∈ S and it can be
further shown that it is a regular point, by which we mean

H0 := δ2
uuE(ū0, k̄0) : Ḣ1 → (Ḣ1)∗ is an isomorphism. (5.2.2)

In this case, a standard application of the Implicit Function Theorem [57] yields
existence of a locally unique path of solutions (ūs, k̄s) in the vicinity of (ū0, k̄0)

which we will assume to be parametrised with an index s ∈ R; exactly this strategy
was used in Chapter 3 to show existence of solutions in a static crack problem with
crack bonds removed from the definition of E , for k small enough. We will set

Hs := δ2
uuE(ūs, k̄s) : Ḣ1 → (Ḣ1)∗. (5.2.3)

As we will see in the numerical examples of Section 5.4, beyond some critical
value of k, bifurcations of the following type begin to occur.

Definition 5.2.2. A (simple quadratic) fold point occurs at (ūb, k̄b) ∈ S if there
exists γb ∈ Ḣ1 such that Ker(Hb) = span{γb},

δ2
ukE(ūb, k̄b)[γb, 1] 6= 0, (5.2.4)

δ3
uuuE(ūb, k̄b)[γb, γb, γb] 6= 0, (5.2.5)

with formulae for these variations of energy given in (5.5.12) and (5.5.13), respec-
tively.

A schematic representation of the idea behind Definition 5.2.2 is shown in
Figure 5.1a. The fact that the predictor ûk introduced in Section 2.4, given by

ûk(x) = k
√
rx sin

(
θx
2

)
,

is such that |∇j ûk(x)| . k|x|1/2−j implies that ûk 6∈ Ḣ1. This is key to (5.2.4) being
true, and suggests that a full bifurcation diagram is an infinite non-self-intersecting
snaking curve [80], consisting solely of regular and fold points as shown in Figure
5.1b. Our functional setup is well-suited to considering an arbitrary finite segment
of it, so we begin with the following set of assumptions.
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Figure 5.1: (a) An illustration of typical behaviour near quadratic fold point (de-
picted as a blue dot). Solid (respectively dashed) lines represent stable (resp. un-
stable) solutions. A change in stability at such points as shown in Proposition 5.2.4
is guaranteed by (5.2.5), which ensures that the smallest eigenvalue passes through
zero with nonzero ‘velocity’.
(b): A schematic representation of a snaking curve with dots representing bifurcation
points. The sets of solutions Bpos and Bpt defined in (5.2.9)-(5.2.10) are represented
in blue and red, respectively. Note that Bpt includes the entirety of the unstable
segments, as well as bifurcation points and small parts of the stable segments.

Assumption 1. There exists a bifurcation diagram in the form of an injective
continuous path B : [0, 1]→ Ḣ1 × I given by

B(s) := (ūs, k̄s), (5.2.6)

where Im(B) ⊂ S (defined in (5.2.1)) is compact and for each s ∈ [0, 1], B(s) is
either a regular point, as in (5.2.2), or a fold point, as in Definition 5.2.2. We further
assume that there are finitely many fold points occuring at s ∈ {b1, . . . , bM} ⊂ (0, 1).
In particular, this implies that Im(B) is a non–self–intersecting curve.

For future reference, if f : B → X, where X is a Banach space, is differen-
tiable, then we write f ′s := d

dsfs.

Assumption 2. There exists c > 0 such that for each s ∈ [0, 1] there exists a
subspace Us of Ḣ1 of codimension at most 1 for which it holds that

〈Hsv, v〉 ≥ c ‖v‖2Ḣ1 (5.2.7)

for all v ∈ Us.

Assumption 2 is the natural analogue of the notion of strong stability from
Theorem 2, which in Chapter 3 is proven to hold for the locally unique solution in
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the small loading regime.
The fact that a succession of fold points occurs is assumed to be an inherent

feature of the lattice and the potential in place, much as the existence of a solution
to a static dislocation problem is assumed in [34]. Assumption 2 ensures that each
B(s) = (ūs, k̄s) represents either a bifurcation point, a stable solution or an unstable
solution which is an index–1 saddle point. This assumption is motivated by the fact
that the anti-plane setup and lattice symmetry naturally binds the crack propaga-
tion to the x1-axis, leaving little room for any more involved bifurcating behaviour.
Moreover, this is also supported by numerical evidence presented in Section 5.4.

As will be shown in Proposition 5.2.4, requiring that (5.2.5) holds ensures
that a change in the stability of the solution occurs at each fold point. This im-
plies that near bifurcation points and on the unstable segments the infimum of the
spectrum of Hs is an eigenvalue, which motivates the following decomposition of the
parametrisation interval [0, 1]: since we look at a finite segment of the full bifurcation
diagram, we will assume for notational convenience that it starts on a stable segment
and that the number of fold points M lying in Im(B) is even. We then define sets

Ipt :=

M/2⋃
k=1

Ik ⊂ [0, 1] and Ipos := [0, 1] \ Ipt, (5.2.8)

where Ik := (b2k−1 − ξ, b2k + ξ) with ξ > 0 small enough to be specified in in the
proof of Proposition 5.2.4. The cases where M is odd or we start on an unstable
segment can be handled in an entirely analogous way. We refer to

Bpt := B(Ipt) (5.2.9)

as the collection of segments of the bifurcation diagram with σp(Hs) 6= ∅ (non–empty
point spectrum) and to

Bpos := B(Ipos) (5.2.10)

as the collection of segments with σ(Hs) ⊂ [c,∞) (positive spectrum, c from As-
sumption 2).

We note that both the unstable segments and neighbourhoods of the bifur-
cation points belong to Bpt, thus the constant c in Assumption 2 can be chosen to
be small enough so that

s ∈ Ipos =⇒ Us = Ḣ1. (5.2.11)

We now establish some initial results about the model. First, a regularity
result, to be proven in Section 5.5.2.
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Proposition 5.2.3 (Regularity of the diagram). The set Im(B) ⊂ Ḣ1 × I is a
one–dimensional Cα−1 manifold.

This result entails that without loss of generality, we may make the following
assumption concerning the parametrisation B.

Assumption 3. The function B : [0, 1] → Ḣ1 × I is a constant speed, Cα−1

parametrisation of the manifold Im(B) ⊂ Ḣ1 × R.

Next we state a result concerning the existence of linearly unstable directions
and corresponding negative eigenvalues for some sections of the bifurcation diagram.
This will be proven in Section 5.5.2.

Proposition 5.2.4 (Existence of an eigen-pair). Under Assumptions 1, 2 & 3, there
exist Cα−2 functions γ : Ipt → Ḣ1 and µ : Ipt → R such that

Hsγs = µsJγs, (5.2.12)

where Hs was defined in (5.2.3) and J represents the Riesz mapping [74], i.e. an
isometric isomorphism between Ḣ1 and (Ḣ1)∗, thus we can equivalently say that

〈Hsγs, v〉 = µs(γs, v)Ḣ1 for all v ∈ Ḣ1.

Furthermore, for j = 1, . . . ,M , we have µbj = 0 with the corresponding eigenvector
γbj introduced in Definition 5.2.2 and also µ′bj 6= 0, implying that a change of stability
occurs at s = bj.

We subsequently establish the following decay and regularity results for the
atomistic core corrector, which rely on the precise characterisation of the lattice
Green’s function for the anti-plane crack geometry developed in Chapter 4. Details
are presented in Section 5.5.2.

Theorem 5.2.5 (Decay properties of solutions and eigenvectors). For any s ∈ [0, 1]

and l ∈ Λ with |l| large enough it holds that for any δ > 0 the atomistic correction
ūs satisfies ∣∣Dūs(l)∣∣ ≤ C|l|−3/2+δ. (5.2.13)

If s ∈ Iunst, then the eigenvector γs ∈ Ḣ1 from Proposition 5.2.4 satisfies

∣∣Dγs(l)∣∣ ≤ C|l|−3/2+δ. (5.2.14)

In both cases C is a generic constant independent of s.
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5.3 Approximation

As numerical simulations are naturally restricted to a computational domain of finite
size, we now consider and analyse a finite-dimensional scheme that approximates the
solution path B defined in (5.2.6) and establish rigorous convergence results.

The starting point is a computational domain ΩR with BR ∩ Λ ⊂ ΩR ⊂ Λ

(where BR is a ball of radius R centred at the origin) and the boundary condition
prescribed as û on Λ \ ΩR. The approximation to (5.2.1) can thus be stated as a
Galerkin approximation, that is we seek to characterise

SR :=
{

(uR, k) ∈ HR × I
∣∣ δuE(uR, k) = 0 ∈ (H0

R)∗
}
, (5.3.1)

where
H0
R := {v : Λ→ R | v = 0 in Λ \ ΩR}.

We can prove the following results, noting that the details of the proofs are presented
in Section 5.5.3.

Theorem 5.3.1. Under Assumptions 1, 2 & 3, there exists R0 > 0, such that for
all R ≥ R0, there exists a Cα−1 approximate bifurcation path BR : [0, 1] → H0

R × I
given by

BR(s) := (ūRs , k̄
R
s ),

where Im(BR) ⊂ SR, such that for any β > 0

‖ūRs − ūs‖Ḣ1 +
∣∣k̄Rs − k̄s∣∣ . R−1/2+β (5.3.2)

and ∣∣E(ūRs , k̄
R
s )− E(ūs, k̄s)

∣∣ . R−1+β, (5.3.3)

where B(s) = (ūs, k̄s) as in (5.2.6).

While the estimate in (5.3.2) appears to be almost sharp (our numerical
results in Section 5.4 indicate that this estimate holds with β = 0, possibly up to
log-factors), more can be said about the approximation of the critical values of the
stress intensity factor for which fold points occur.

Theorem 5.3.2. For R suffiently large, the approximate bifurcation path BR from
Theorem 5.3.1 contains M fold points in the sense of Definition 5.2.2 occuring at
s ∈ {bR1 , . . . , bRM} ⊂ (0, 1), and for each of these we have

∣∣k̄R
bRj
− k̄bj

∣∣ . R−1+β for any β > 0.
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This superconvergence result is well-known in bifurcation theory [27], and is
observed numerically in our tests in Section 5.4.

5.4 Numerical investigation

In this section we present results of numerical tests that confirm the rate of decay of
|Dūs| and |Dγs| established in Theorem 5.2.5, as well as the convergence rates from
Theorems 5.3.1 and 5.3.2. The computational setup is similar to the one described
in [19, Section 3], with Λ and R as specified in Sections 2.1 and the pair-potential
given by

φ(r) =
1

6

(
1− exp(−3r2)

)
. (5.4.1)

We employ a pseudo-arclength numerical continuation scheme to approximate BR
[7]. To compute equilibria we employ a standard Newton scheme, terminating at an
`∞-residual of 10−8.

Theorems 5.2.5 suggests that |Dūs(l)| . |l|−3/2 and |Dγs(l)| . |l|−3/2. This
is verified in Figure 5.2. Theorem 5.3.1 suggests that in the supercell approximation
of B in (5.2.6) we expect ‖ūRs − ūs‖Ḣ1 + |k̄Rs − k̄s| ∼ O(R−1/2), where R is the size
of the domain. To verify this numerically, we first compute BR for R = 32, . . . , 256

via a pseudo–arclength continuation scheme. The results are shown in Figure 5.3,
with stable segments plotted as solid lines and unstable segments as dashed lines. To
measure the distance between the segments of the bifurcation diagram, we compute
the Hausdorff distance [73] with respect to ‖ · ‖Ḣ1-norm between the critical points
on BR (for R = 32, . . . , 90.51)and on BR∗ , where R∗ = 256. The result is shown in
Figure 5.4a.

Finally, we test the superconvergence result for the bifurcation points from
Theorem 5.3.2, which predicts that |k̄R

bRj
− k̄bj | ∼ O(R−1). To this end we accelerate

the convergence of the sequence {k̄R
bRj
} (forR = 32, . . . , 256) by employing Richardson

extrapolation [72], thus giving us an approximate limit values for k̄bj . The values of
the approximate limits, as well as the R−1 convergence is exhibited in Figure 5.4b.

Remark 5.4.1. The pair-potential φ defined in (5.4.1) does not satisfy the strong
assumption of compact support of φ′ introduced in (5.1.2), but has the slightly
weaker property of exponential decay in first derivative. It thus illustrates the point
mentioned in Section 2.3 that (5.1.2) is by no means a necessary condition.
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Figure 5.2: The decay of Dūs and Dγs. Transparent dots denote data points
(|l|, |Dus(l)|), solid curves their envelopes. We observe the expected rate of |l|−3/2.
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Figure 5.3: The bifurcation paths BR for R = 32, . . . , 256, that is for R = 2n/4 for
n = 20, . . . 32. Solid lines denote stables segments, dashed lines unstable segments
and dots the bifurcation points.

5.5 Proofs

5.5.1 Preliminaries

Our approach is based on two classic results from bifurcation analysis on Banach
spaces, cf. [27], which we state in this section for convenience. The first result is
known as ’ABCD Lemma’ and is adapted from [54].

Lemma 5.5.1 (ABCD Lemma). Let H be a Hilbert space with dual H∗ and consider
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Figure 5.4: (a) The approximate rate of convergence of the supercell approximation
of B, measured by the Hausdorff distance with respect to ‖ · ‖Ḣ1-norm, compared
against the domain with R = 256.
(b) The convergence rate of the values of stress intensity factor at which bifurcations
occur. The approximate limit values as predicted by Richardson extrapolation are
given in the legend entries. The fact that all unstable-to-stable (and separately
stable-to-unstable) fold points occur at the same values indicates that in the limit
the bifurcation path is exactly vertical.

the linear operator M : H × R→ H∗ × R of the form

M :=

[
A b

(c, ·)H d

]
,

where A : H → H∗ is self-adjoint in the sense that 〈Av, w〉 = 〈Aw, v〉 for all
v, w ∈ H, b ∈ H∗ \ {0}, c ∈ H \ {0} and d ∈ R. Then

(i) if A is an isomorphism from H to H∗, then M is an isomorphism between
H × R and H∗ × R if and only if d− (c, A−1b)H 6= 0; and

(ii) if dim Ker(A) = codim Range(A) = 1 with Ker(A) = span{γ}, then M is an
isomorphism if and only if 〈b, γ〉 6= 0 and (c, γ)H 6= 0.

To state the second result we introduce the following setup: let X, Y and
Z be real Banach spaces and F ∈ Ck(U × Y ;Z) for some k ≥ 1, where U is a
bounded open subset of X. The total derivative of F at (x, y) ∈ X × Y is denoted
DF (x, y) ∈ L(X × Y, Z), with partial derivatives denoted DxF (x, y) ∈ L(X,Z) and
DyF (x, y) ∈ L(Y,Z). We now state a version of [20, Theorem 1] tailored to our
setting.

Theorem 5.5.2. Suppose a function y : U → Y is Lipschitz continuous with Lips-
chitz constant c2, and there exist constants c0 and c1 and a monotonically increasing
function L1 : R→ R such that the following hypotheses are satisfied:
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(i) for any x0 ∈ U , DyF
(
x0, y(x0)

)
is an isomorphism of Y onto Z with

sup
x0∈U

∥∥DyF
(
x0, y(x0)

)−1∥∥ ≤ c0; (5.5.1)

(ii) we have the uniform bound

sup
x0∈U

∥∥DxF
(
x0, y(x0)

)∥∥ ≤ c1; (5.5.2)

(iii) for any x0 ∈ U and all (x, y) satisfying ‖x− x0‖+ ‖y − y(x0)‖ ≤ ξ, we have

‖DF (x, y)−DF (x0, y(x0)‖ ≤ L1(ξ)
(
‖x− x0‖+ ‖y − y(x0)‖

)
.

It then follows that there exist constants a, d > 0 depending only on c0, c1, c2 and L1

so that whenever
sup
x0∈U

‖F (x0, y(x0)
)
‖ ≤ d,

then there exists a unique function g ∈ Ck(⋃x0∈U B(x0, a), Y ) such that

F
(
x, g(x)

)
= 0.

Moreover, for all x0 ∈ U and all x ∈ B(x0, a),

‖g(x)− y(x0)‖ ≤ K0

(
‖x− x0‖+

∥∥F (x0, y(x0)
)∥∥), (5.5.3)

where K0 > 0 depends only on the constants c0 and c1.

For future reference we note that a suitable choice a is given by

a = min

{
â

2
,
b

2c2

}
− ε (5.5.4)

where â = b
4M , b is such that bL1(b) ≤ 1

2M , M = max{c0, 1 + c0c1} and ε > 0

is sufficiently small to ensure that a is positive. This can be seen by tracing the
constants in the proof given in [20].

5.5.2 Proofs about the model

We begin with a technical lemma that is required to prove Theorem 5.2.1.
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Lemma 5.5.3. If v ∈ Ḣ1, then, for any l ∈ Γ±,

|v(l)| . ||v||Ḣ1(1 + log |l|). (5.5.5)

Proof. The argument in [66, Proposition 12(ii)] proves the result for the case without
a crack present. In that setting, the proof follows directly from [67, Theorem 2.2].
For a crack geometry, we modify the argument. We distinguish two cases, depending
on whether l ∈ Γ+ or l ∈ Γ−. We recall that x̂ =

(
1
2 ,

1
2

)
and that by definition

v ∈ Ḣ1 =⇒ v(x̂) = 0.
Case 1: Let l ∈ Γ+, which implies that (l − x̂) · e1 = 0. We consider a

sequence of squares (Qi)
N
i=0 ⊂ R2 \ (ΩΓ ∪ Γ0) (recall the definition of ΩΓ in (3.5.1))

aligned in the direction e2 (which is possible due to the assumption on l) and defined
as follows. Q0 and QN are unit squares corresponding to sites x̂ and l, defined in
such a way that x̂ (respectively l) is the midpoint of the side of Q0 (resp. QN ) which
borders Γ+. The squares Q1, . . . , QN−1 are defined to fill the space between x̂ and
l in such a way that they have disjoint interiors and are such that their side-lengths
differ by at most a factor of 2, with one side of the smaller square contained in one
side of the larger square. It is easy to see that there is at most

N . (2 + log |l − x̂|) . 1 + log |l|

squares in the sequence. See Figure 5.5.

...

...

Figure 5.5: An example of construction of squares. The white dot represents x̂, the
green dot is â, the purple dot a site in Case 1 and the orange dot is a site in Case 2.

For any two neighbouring squares Qj , Qj+1 it follows from a special case of
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[51, Lemma 2] that

|(v)Qj+1 − (v)Qj | . ‖∇Iv‖L2(R2\Γ0) = ‖v‖Ḣ1 , (5.5.6)

where
(v)Qj :=

1

|Qj |

∫
Qj

Iv(x) dx

and I denotes the crack domain P1 interpolation operator employed throughout this
thesis (in particular first discussed in the proof of Theorem 3.2.1).

As a result

|(u)QN − (u)Q0 | ≤
N∑
j=1

|(u)Qj − (u)Qj−1 | (5.5.7)

.
N∑
j=1

‖∇Iv‖L2(R2\Γ0) = N‖v‖Ḣ1 . (2 + log |l|)‖v‖Ḣ1 .

Furthermore, it is naturally true that

|(v)Q0 − v(x̂)| ≤ ‖∇v‖L∞(Q0) and |v(l)− (v)QN | ≤ ‖∇v‖L∞(QN ) (5.5.8)

and since on eachQi, the piecewise linear interpolant v belongs to a finite-dimensional
space, we obtain

‖∇Iv‖L∞(Qi) . ‖∇Iv‖L2(Qi) . ‖∇v‖L2(R2\Γ0) = ‖v‖Ḣ1 , (5.5.9)

where the first inequality follows from the equivalence of norms for finite-dimensional
spaces and the second from extending the domain from Qi to the whole of R2 \ Γ0.

With (5.5.7) and (5.5.8)-(5.5.9) in hand, we obtain

|v(l)| = |v(l)− v(x̂)| ≤ |v(l)− (v)QN |+ |(v)QN − (v)Q0 |+ |(v)Q0 − v(x̂)| (5.5.10)

. (1 + log |l|)‖v‖Ḣ1 ,

which concludes the proof for l ∈ Γ+.
Case 2: Let l ∈ Γ−. The fact that l is on the other side of the crack relative

to x̂ deems the previous argument invalid, as we can no longer define the sequence
of squares aligned with x̂ and l which will be a subset of R2 \ (ΩΓ ∪ Γ0). Thus we
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first ’jump’ to the other side. By defining â =
(

1
2 ,−1

2

)
we conclude that

|v(l)− v(x̂)| ≤ |v(l)− v(â)|+ |v(â)− v(x̂)|
. ‖v‖Ḣ1((1 + log |l − â|))
. ||v||Ḣ1(1 + log |l|),

where the second inequality follows from applying (5.5.10) to a sequence of squares
between l and â and the fact that a bound on |v(â)− v(x̂)| can be incorporated into
the general form .

We now show that the model is well-defined, with the particular emphasis on
two new elements of the analysis that are distinct from previous arguments of this
kind, e.g. [22, 34].

Proof of Theorem 5.2.1. We can decompose the energy into a bulk part and a crack
surface part by writing

E(u, k) = Ebulk(u, k) + EΓ(u, k),

where

Ebulk(u, k) :=
∑
m∈Λ

∑
ρ∈R(m)

φ
(
Dρûk(m) +Dρu(m)

)
− φ

(
Dρûk(m)

)
,

EΓ(u, k) :=
∑
m∈Γ±

∑
ρ∈R\R(m)

φ
(
Dρûk(m) +Dρu(m)

)
− φ

(
Dρûk(m)

)
.

We notice that Ebulk excludes the bonds across the crack and thus is well-defined on
Ḣ1 × I, as shown in the first part of Theorem 3.2.1.

To establish the same for the EΓ, we note that we have the symmetry

û−k(l) = ûk(l1,−l2);

using this observation, for m ∈ Γ± and ρ ∈ R \ R(m) (that is bonds crossing the
crack) we have

|Dρûk(m)| = | − 2ûk(m)| ∼ k|m|1/2 as |m| → ∞. (5.5.11)

We note here that the condition k 6= 0 originating from the definition of I is crucial
here.
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Furthermore, Lemma 5.5.3 establishes that, for any u ∈ Ḣ1 with m ∈ Γ± and
ρ ∈ R \ R(m), we have |Dρu(m)| . log |m|, which in particular implies that

|Dρûk(m) +Dρu(m)| ≥ C0|m|1/2 − C1 log |m|,

for suitable constants C0, C1. Therefore, using assumption (5.1.2), it follows that for
any m ∈ Γ± with |m| sufficiently large,

φ
(
Dρûk(m) +Dρu(m)

)
− φ

(
Dρûk(m)

)
= 0;

this entails that for each u ∈ Ḣ1 we effectively only sum over a finite domain, and
implies that EΓ is indeed well-defined over Ḣ1 × R.

The differentiability properties of the functional follow from a standard ar-
gument, see [68]. In particular we note that due to the assumptions on interval I
the issues near k = 0 do not enter the analysis. Here we simply provide formulae for
derivatives of relevance to our subsequent arguments. In particular, we have

〈δkE(u, k), λ〉 =
∑
m∈Λ

(∇V (D̃ûk(m) + D̃u(m))−∇V (D̃ûk(m)) · (λD̃ûk(m)),

〈δuE(u, k), v〉 =
∑
m∈Λ

∇V (D̃ûk(m) + D̃u(m)) · D̃v(m),

δ2
ukE(u, k)[v, λ] =

∑
m∈Λ

∇2V (D̃ûk(m) + D̃u(m))[λD̃ûk(m)] · D̃v(m), (5.5.12)

〈δ2
uuE(u, k)v, w〉 =

∑
m∈Λ

∇2V (D̃ûk(m) + D̃u(m))D̃v(m) · D̃w(m),

δ3
uuuE(u, k)[v, w, z] =

∑
m∈Λ

∇3V (D̃ûk(m) + D̃u(m))[D̃v(m), D̃w(m), D̃z(m)].

(5.5.13)

As stated, the foregoing expressions are valid for v ∈ Hc. To define them for v ∈ Ḣ1

one requires an extension argument relying on showing that δuE(0, k) ∈ (Ḣ1)∗, which
is proven in Chapter 3 in Theorem 3.2.1, and analogous results for the remaining
terms.

We now turn to the analysis of the bifurcation path B.

Proof of Proposition 5.2.3. This is a standard result and follows from Theorem 5.5.2
and the fact that E is a Cα functional, so we may apply the local uniqueness of the
function g whose existence was asserted in Theorem 5.5.2. We therefore only outline
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the proof. Define sets corresponding to neighbourhoods of fold points

If :=

M⋃
i=1

(bi − ξ, bi + ξ) and Bf := B(If),

Since Im(B) is compact, then so is Im(B) \ Bf , thus the latter can be covered with a
finite collection of neighbourhoods of points {(ūsi , k̄si)}i=1,...,N .

It will be shown in the proof of Theorem 5.3.1 that Hsi = δ2
uuE(ūsi , k̄si)

at each such point is an isomorphism, thus rendering Theorem 5.5.2 applicable to
δuE(ūsi , k̄si), giving us a locally unique Cα−1 graph of critical points k 7→ u(k),
which by its uniqueness together with injectivity of B has to coincide with (ūs, k̄s),
thus Im(B) \ Bf is a piecewise Cα−1 manifold.

To establish the same in Bf , for each fold point bi, one considers an extended
system F̃ : (Ḣ1 × I) × R given by F̃ (u, k, t) =

(
δuE(u, k), (u − ūbi , γbi)Ḣ1 − t

)
,

where γbi was introduced in Definition 5.2.2. The ABCD Lemma is applicable to
this extended system evaluated at (ūbi , k̄bi , bi), thus ensuring that Theorem 5.5.2 is
also applicable, giving us a locally unique Cα−1 graph t 7→ (u(t), k(t)), where in
particular k(0) = k̄bi . Again, due to uniqueness this must coincide with (ūs, k̄s), and
hence this finishes the argument.

Likewise, the existence of an eigen-pair can be established.

Proof of Proposition 5.2.4. In what follows we always consider a system G : B ×
Y → Z where B ⊂ [0, 1], Y = Ḣ1 × R and Z = (Ḣ1)∗ × R, given by

G(s, γ, µ) := (Hsγ − µJγ, (c, γ)Ḣ1 − 1), (5.5.14)

where c ∈ Ḣ1 will be chosen appropriately. We consider two subsets of Bpt seperately.

Throughout this proof we endow the product spaces with their canonical norms, for
example, ‖(u, k)‖Ḣ1×R = ‖u‖Ḣ1 + |k|.

(a) Vicinity of a bifurcation point: We let c = γbi , introduce the notation
y := (γ, µ) and observe that

DyG(bi, γbi , µbi) =

(
Hbi − µbiJ −γbi

(c, ·)Ḣ1 0

)
.

Thus, Lemma 5.5.1 and Theorem 5.5.2 together imply that, for s ∈ (bi − ξ, bi + ξ),
where ξ > 0 is small enough (cf. (5.2.8)), there exists an eigen-pair (µs, γs). To show
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that µ′s := dµs
ds 6= 0 at s = bi, we differentiate both sides of (5.2.12) with respect to

s to obtain

δ3
uuuE(ūs, k̄s)[ū

′
s, γs] + δ3

uukE(ūs, k̄s)[ūs, k̄
′
s] +Hs[γ

′
s] = µ′sJ [γs] + µsJ [γ′s]. (5.5.15)

By definition, at a fold point we have k̄′bi = 0 and since along the bifurcation path
we have δuE(ūs, k̄s) = 0, we can differentiate both sides with respect to s to get
Hsū

′
s + k̄′sbs = 0, it follows that ū′bi = αγbi for some α 6= 0 (constant speed of

parametrisation). Testing (5.5.15) at s = bi with γbi and simplifying, we obtain

µ′bi = α〈δ3
uuuE(ūbi , k̄bi)[γbi , γbi ], γbi〉 6= 0, (5.5.16)

which is nonzero by Assumption (5.2.5). This completes case (a).

(b) Unstable segment away from bifurcations: We assume without loss of
generality that at the bifurcation point bi we switch from a stable segment to an
unstable segment. The result in (a) establishes existence of an eigenvector for s ∈
(bi − ξ, bi + ξ), so we let t1 := bi + ξ − ε, where 0 < ε < ξ and thus are able to set
c = γt1 in (5.5.14). A subsequent application of Theorem 5.5.2 to system G with
this newly chosen c yields existence of a new interval (t1−ξ1, t1 +ξ1) ⊂ Ipt for which
the premise of the theorem is true. This procedure can be iterated, for example
by incrementing t2 := t1 + ξ1/2 and repeating the argument. To cover the entire
unstable segment in this way we need to bound ξj from below, independently of tj .

Due to (5.5.16) we know that µt < 0, which implies that the subspace Ut
from Assumption 2 can be characterised as

Ut = {v ∈ Ḣ1 | (v, γt)Ḣ1 = 0}. (5.5.17)

With this in hand we consider any (u, k) ∈ Ḣ1 × R, decompose u as u = αγt + v,
where α ∈ R and v ∈ Ut, and aim to uniformly bound

‖DyG(t, γt, µt)[u, k]‖ =
∥∥Htu− µtJu− kJγt

∥∥+
∣∣(γt, u)Ḣ1

∣∣
from below.

To do so, we observe that

〈(Ht − µtJ)u− kJγt, v
‖v‖Ḣ1

〉 = 〈(Ht − µtJ)v, v
‖v‖Ḣ1

〉 ≥ (c− µt)‖v‖Ḣ1 , (5.5.18)

〈(Ht − µtJ)u− kJγt, −γt〉 = 〈(Ht − µtJ)αγt − kJγt, −γt〉 = k (5.5.19)
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Together, (5.5.18) and (5.5.19) imply that

‖Htu− µtJu− kJγt‖ = sup
ṽ∈Ḣ1

‖ṽ‖=1

|〈Htu− µtJu− kJγt, ṽ〉|

≥ max
(
|c− µt|‖v‖Ḣ1 , |k|

)
≥ 1

2 min
(
|c− µt|, 1

)(
‖v‖Ḣ1 + |k|

)
. (5.5.20)

Moreover, we trivially have

|(γt, u)Ḣ1 | = |α| = ‖αγt‖Ḣ1 . (5.5.21)

Let c̃0(s)−1 = min{1
2(c − µt),

1
2} > min{1

2(c), 1
2} =: c−1

0 , then combining
(5.5.20) and (5.5.21) yields

‖DyG(t, γt, µt)[u, k]‖ ≥ c̃0(t)−1‖(u, k)‖.

In a similar vein, we observe that

‖DsG(γt, µt, t)‖ ≤ ‖δ3
uuuE(ūt, k̄t)‖+ ‖δ3

uukE(ūt, k̄t)‖|k̄′t| =: c̃1(t) ≤ c1,

where c1 := maxt∈Ipt c̃1(t), which is guaranteed to exist due to E being a Cα func-
tional and that B is a Cα−1 function of s, where α ≥ 5 by assumption.

It is also evident that Condition (iii) from Theorem 5.5.2 is satisfied with

L1(ξ) := sup
(s,y)∈S(s̃,γs̃,µs̃,ξ)

‖D2G(s, y)‖,

where S(s̃, γs̃, µs̃, ξ) = {(s, γ, µ) ∈ R× Ḣ1 × R : |s− s̃|+ ‖γ − γs̃‖+ |µ− µs̃| ≤ ξ}.
Guided by (5.5.4), we define M := max{c0, 1 + c0c1}, choose b such that

bL1(b) ≥ 1
2M , let â = b

4M and recall from (5.5.4) that ξ = min
{
â
2 ,

b
2c2

}
− ε with

sufficiently small ε > 0 is an admissible choice for ξ which is in particular independent
of t.

This completes the proof of part (b).
(c) Regularity: It remains to establish the Cα−2-regularity of

s 7→ (µs, γs), s ∈ Ipt.

To that end, we note that G is a smooth function of γ and µ and Cα−2 function
with respect to s, thus uniqueness and regularity parts of Theorem 5.5.2 immediately
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imply that γ and µ are Cα−2(Ipt) functions.

We are now in a position to prove the spatial regularity of ūs and γs.

Proof of Theorem 5.2.5. We begin by defining v(m) := D2τG(m, l), where G is the
lattice Green’s function for the anti-plane crack geometry, as introduced in Theorem
4.2.2 and proven to satisfy decay property

|D1D2τG(m, l) . (1 + |ω(m)| |ω(l)| |ω(m)− ω(l)|2−δ)−1,

where ω is the complex square root mapping defined in polar coordinates as

ω(l) := r1/2(cos(θ/2), sin(θ/2))

and δ > 0 is arbitrarily small. Here, and throughout this proof, . should be read as
≤ Cδ where Cδ is a constant that may depend on δ.

Proof of Theorem 5.2.5: estimate (5.2.13): We first prove the decay estimate
for ūs. We can write

Dτ ūs(l) =
∑
m∈Λ

Dūs(m) ·Dv(m)

=
∑
m∈Λ

∑
ρ∈R(m)

(Dρūs(m)− φ′(Dρûk̄s(m) +Dρūs(m)))Dρv(m) (5.5.22)

+
∑
m∈Γ±

∑
ρ∈R\R(m)

(−φ′(Dρûk̄s(m) +Dρūs(m)))Dρv(m), (5.5.23)

noting that the second equality follows from the fact that δuE(ūs, k̄s) = 0, which
implies we effectively subtract zero. The term (5.5.22) can be estimated by |l|−3/2+δ

due to the argument given in Theorem 3.2.2; that is,∣∣∣∣ ∑
m∈Λ

∑
ρ∈R(m)

(Dρūs(m)− φ′(Dρûk̄s(m) +Dρūs(m)))Dρv(m)

∣∣∣∣ . |l|−3/2+δ.

The additional term (5.5.23) appears because we define the energy with the
homogeneous discrete gradient operator and can be estimated as follows. Using
(5.5.11) we see that we only sum over at most 2R3

φ lattice sites in (5.5.23) and thus
we can decomposeDρv(m) into a sum of finite differences along bonds that go around
the crack. There will be at most 2R3

φ many of them and each separately decays like
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|D1ρD2τG(m, l)| . |l|−3/2+δ, thus ensuring that (5.5.23) can be bounded by∣∣∣∣ ∑
m∈Γ±

∑
ρ∈R\R(m)

(−φ′(Dρûk̄s(m) +Dρūs(m)))Dρv(m)

∣∣∣∣ . C|l|−3/2+δ,

where C < 4R6
φ (though an optimal C might be much smaller). This concludes the

proof of (5.2.13).
Proof of Theorem 5.2.5: estimate (5.2.14): To estimate γs we employ an

analogous argument. We begin by writing

Dτγs(l) =
∑
m

Dγs(m) ·Dv(m)

=
∑
m∈Λ

∑
ρ∈R(m)

(Dργs(m)− φ′′(Dρûk̄s(m) +Dρūs(m))Dργs(m))Dρv(m)

(5.5.24)

+
∑
m∈Γ±

∑
ρ∈R\R(m)

(−φ′′(Dρûk̄s(m) +Dρūs(m))Dργs(m))Dρv(m).

(5.5.25)

Using precisely the same argument as for (5.5.23) we can bound (5.5.25) by |l|−3/2+δ.
To estimate (5.5.24) we Taylor-expand φ′′ around 0 and observe that∣∣∣∣∣∣

∑
m∈Λ

∑
ρ∈R(m)

(Dργs(m)− φ′′(Dρûk̄s(m) +Dρūs(m))Dργs(m))Dρv(m)

∣∣∣∣∣∣ (5.5.26)

. ‖γs‖Ḣ1

(∑
m∈Λ

|R(m)|2|Dv(m)|2
)1/2

,

where |R(m)| . |m|−1 is the remainder of the expansion. This readily implies
that |Dτγs(l)| . |l|−1. Thus looking again at (5.5.26), instead of applying Cauchy-
Schwarz inequality, we directly observe that∣∣∣∣∣∣

∑
m∈Λ

∑
ρ∈R(m)

(Dργs(m)− φ′′(Dρûk̄s(m) +Dρūs(m))Dργs(m))Dρv(m)

∣∣∣∣∣∣
.
∑
m∈Λ

|R(m)||Dγs(m)||Dv(m)| . |l|−3/2+δ,

since |R(m)||Dγs(m)| . |m|−2. As before, δ > 0 is arbitrarily small. This completes
the proof of the second bound (5.2.14).
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Remark 5.5.4. It is interesting to note that while the model includes a full interaction
between nearest-neighbour atoms, even across the crack, it is nonetheless the lattice
Green’s function for the fractured domain that is employed to estimate the atom-
istic solutions. The homogeneous lattice Green’s function fails because the finite
differences of ûk(m) across the crack grow like ∼ |m|1/2.

5.5.3 Convergence proofs

In tandem with the results from bifurcation theory stated in Section 5.5.1, in order
to prove the results from Section 5.3 we rely on the following auxiliary result from
[34] that was adapted to domain with cracks in Chapter 3 in Lemma 3.5.6.

Lemma 5.5.5. There exists a truncation operator TR : Ḣ1 → H0
R such that TRv = 0

in Λ \BR and which satisfies

‖TRv − v‖Ḣ1 . ‖v‖Ḣ1(Λ\BR/2) :=

 ∑
m∈Λ\BR/2

|Dv(m)|2
1/2

∀v ∈ Ḣ1. (5.5.27)

We can now prove the main result of this section.

Proof of Theorem 5.3.1. We consider an extended system F : B × Y → Z where
B = [0, 1], Y = H0

R × I and Z = (H0
R)∗ × R given by

F (s, y) = (δuE(uy, ky), (uy − ūs, ū′s)Ḣ1), (5.5.28)

where ū′s = dū(s)
ds and y = (uy, ky). We further introduce a mapping yR : B → Y

given by yR(s) = (TRūs, k̄s). We shall now show that, with the help of ABCD
Lemma, F satisfies the conditions of Theorem 5.5.2.

One can easily obtain that

DyF (s, yR(s)) =

(
δ2
uuE(TRūs, k̄s) δ2

ukE(TRūs, k̄s)

(ū′s, ·)Ḣ1 0

)
=:

(
ARs bRs

(ū′s, ·)Ḣ1 0

)
.

We further define As := Hs = δ2
uuE(ūs, k̄s) (renamed to keep intuitive notation) and

bs := δ2
ukE(ūs, k̄s) and observe that

DyF (s, yR(s)) =

(
As bs

(ū′s, ·)Ḣ1 0

)
+

(
ARs −As bRs − bs

0 0

)
=: M1

s +M2
s .

Here, we treat As as a restriction to HR0 and bs as an element of (HR0 )∗. Since
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TRūs → ūs as R→∞ strongly in Ḣ1 (a consequence of (5.5.27), the decay estimate
from Theorem 5.2.5 and E ∈ Cα),

‖ARs −As‖L(Ḣ1,(Ḣ1)∗) + ‖bRs − bs‖(Ḣ1)∗ → 0 (5.5.29)

as R → ∞. Our strategy will therefore be to apply the ABCD Lemma to M1
s ,

interpreted as an operator from Ḣ1 × I to (Ḣ1)∗ × R, and show that M2
s is a small

perturbation.
To carry out this strategy we begin by differentiating δuE(ūs, k̄s) = 0 with

respect to s to obtain
Asū

′
s + k̄′sbs = 0 (5.5.30)

along the bifurcation path B. At a fold point, when s = bi, due to (5.2.4), we have
k̄′s = 0, thus revealing that ū′bi = αγbi for some non-zero α ∈ R. For s 6= bi, the
operator As is invertible and thus

ū′s = −k̄′s(As)−1bs. (5.5.31)

We can now show that M1
s satisfies the conditions of ABCD Lemma.

Case 1, s ∈ Ipos: Suppose that s ∈ Ipos from (5.2.8). In this case As is an
isomorphism due to (5.2.7) and (5.2.11). Thus, to apply ABCD Lemma to M1

s , we
have to check that (ū′s, (As)

−1bs)Ḣ1 6= 0, which is true since

(ū′s, (As)
−1bs)Ḣ1 = −k̄′s(ū′s, ū′s)Ḣ1 6= 0,

since by definition at a regular point we have k̄′s 6= 0 and ū′s 6= 0.
Case 2, s ∈ Ipt: Now suppose s ∈ Ipt but s 6= bi ∀i ∈ {1, . . . ,M}. It can

be shown that As remains an isomorphism as follows. Proposition 5.2.4 tells us that
we have an eigen-pair (µs, γs) satisfying (5.2.12). Any v ∈ Ḣ1 can be decomposed
into v = αγs + w, where w ∈ Us with Us given by (5.5.17) and α ∈ R. Thus,

‖Asv‖ = sup
ṽ∈Ḣ1

‖ṽ‖=1

|〈Asv, ṽ〉| ≥
1

2

(
|〈Asv, γs〉|+

∣∣〈Asv, w
‖w‖〉

∣∣) ,
and we can further estimate

|〈Asv, γs〉| =
∣∣α〈Asγs, γs〉+ 〈Asw, γs〉

∣∣ = |αµs|,
|〈Asv, w

‖w‖〉| = |α〈Asγs, w
‖w‖〉+ 〈Asw, w

‖w‖〉| ≥ c
‖w‖‖w‖2 = c‖w‖,
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where c is the stability constant from Assumption 2. This, together with the fact
that ‖v‖ ≤ |α|+‖w‖ readily implies that we can set c̃ := 1

2 min{|µs|, c} and conclude
that for all v ∈ Ḣ1

‖Asv‖ ≥ c̃‖v‖.

Thus, as in the case s ∈ Ipos, (5.5.31) ensures that we can apply the ABCD lemma
and deduce again that As is an isomorphism.

Case 3, s = bi: Finally, suppose s = bi for some i ∈ {1, . . . ,M}. Due to
Assumption 2 we know that the kernel of As is one-dimensional at a fold point and
thanks to Proposition 5.2.4 we know that it is spanned by γs, which means that
(5.5.30) implies that ū′s = γs. By Definition 5.2.2 we know that 〈bs, γs〉 6= 0, which
implies that the ABCD Lemma is again applicable.

Uniform Stability of M1
s : We have shown so far that, for all s ∈ [0, 1], M1

s

is an isomorphism from Ḣ1× I to (Ḣ1)∗×R. In particular, this implies that for any
x = (ux, kx) ∈ Ḣ1 × I we have

‖M1
s x‖ ≥ c̃s‖x‖,

where c̃s > 0.
Since s 7→M1

s is continuous in operator-norm due to smoothness of E estab-
lished in Theorem 5.2.1 and smoothness of s 7→ (ūs, k̄s) established in Proposition
5.2.3, it follows that the infimum inf c̃s is attained on [0, 1] and must therefore be
positive. In summary, we have established the existence of c̃ > 0 such that

‖M1
s x‖ ≥ c̃‖x‖ ∀s ∈ [0, 1], x ∈ HR0 × R.

Uniform Stability: Next, using the definition of M2
s we can bound

‖DyF (s, yR(s))x‖ ≥ ‖M1
s x‖ − ‖M2

s x‖ ≥ c̃‖x‖ − ‖ARs −As‖‖ux‖ − ‖bRs − bs‖|kx|

≥ c̃

2
‖x‖,

for R large enough, thus ensuring that DyF (s, yR(s)) is an isomorphism from HR0 ×I
to (HR0 )∗×R, thus satisfying condition (i) from Theorem 5.5.2, with uniform bound

‖DyF (s, yR(s))x‖ ≥ c̃

2
‖x‖ ∀s ∈ [0, 1], ξ ∈ HR0 × R,

that is c0 from (5.5.1) is given by c0 = 2
c̃ .

Conclusion: So far we have confirmed Condition (i) of Theorem 5.5.2. To
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conclude the proof, we now need to also check conditions (ii, iii).
It can be readily checked that

‖DsF (s, yR(s))‖ = | − 1 + (TRūs − ūs, ū′′s)Ḣ1 | ≤ 2

for R large enough. Thus the condition (ii) in Theorem 5.5.2 is satisfied with c1 in
(5.5.2) given by c1 = 2.

The condition (iii) from Theorem 5.5.2 is satisfied with

L1(ξ) := sup
(s∗,y∗)∈S(s,yR(s),ξ)

‖D2F (s∗, y∗)‖,

where

S(s, yR(s), ξ) = {(s0, y0) ∈ R× (HR0 × I) : |s− s0|+ ‖TRūs − uy‖+ |k̄s − ky| ≤ ξ}.

Finally, we observe that

sup
s∈[0,1]

‖F (s, yR(s))‖ = sup
s∈[0,1]

(
‖δuE(TRūs, k̄s)‖+ |(TRūS − ūs, γs)|

)
→ 0,

as R→∞, which implies that no matter how large constants c0, c1 and c2 were and
how badly behaved L1 was, we would still fall within the regime where the result of
Theorem 5.5.2 was applicable for R large enough.

We can thus conclude that there exists BR : [0, 1] → HR0 × R given by
BR(s) := (ūRs , k̄

R
s ), such that F (s, (ūRs , k̄

R
s )) = 0, which in particular implies

δuE(ūRs , k̄
R
s ) = 0.

Furthermore, using (5.5.3) we can conclude that

‖ūRs − TRūs‖Ḣ1 + |k̄Rs − k̄s| ≤ K0‖F (s, yR(s))‖ . ‖TRūs − ūs‖ . R−1/2+β,

for arbitrarily small β > 0. Crucially, K0 depends only on c0 and c1, which are
independent of s and the last inequality follows from Lemma 5.5.27 and the regularity
estimate from Theorem 5.2.5. This concludes the result, since trivially

‖ūRs − ūs‖Ḣ1 ≤ ‖ūRs − TRūs‖Ḣ1 + ‖TRūRs − ūs‖Ḣ1 .

Finally, we note that (5.3.3) follows as an immediate collorary, arguing exactly
as in the proof of [33, Theorem 2.4].
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To prove our final result, the superconvergence of critical values of the stress
intensitt factor, we first need to quote two intermediate technical steps. The first
lemma, which highlights the origin of this superconvergence, is taken from [27, The-
orem 4.1], restated in our notation for the sake of convenience.

Lemma 5.5.6. Let (ūbi , k̄bi) ∈ B be a simple quadratic fold point. Under Assump-
tions 1,2 & 3, for R large enough, the approximate bifurcation diagram BR has a
quadratic fold point at s = bRi , where |bRi − bi| → 0 as R→∞. Furthermore,

|k̄R(bRi )− k̄(bi)| ≤
∥∥ū′R(bi)− ū′(bi)

∥∥2

Ḣ1 +
∣∣k̄′R(bi)− k̄′(bi)

∣∣2
+ ‖ūR(bi)− ū(bi)‖2Ḣ1 + |k̄R(bi)− k̄(bi)|2

+ inf
v∈HR0

‖v − γbi‖2Ḣ1 .

To exploit the inequality from Lemma 5.5.6, we adapt [20, Theorem 2], which
is a follow-up result to Theorem 5.5.2 for derivatives.

Lemma 5.5.7. Assume the hypotheses of Theorem 5.5.2 and in addition that

sup
x0∈U

‖DF (x0, y(x0)‖ ≤ c1.

Then there exists a continuous function K : R+ → R+, which depends only on
c0, c1, L1 such that for all x0 ∈ U and all x ∈ B(x0, a) it holds that

‖Dg(x)−Dy(x0)‖ ≤ K(‖Dy(x0)‖)
(
‖x− x0‖+ ‖F (x0, y(x0)‖

+ ‖DF (x0, y(x0), Dy(x0)‖
)
.

Proof of Theorem 5.3.2. Lemma 5.5.6 implies that, for a domain radius R large
enough, we have exactly M approximate fold points bRj → bj as R → ∞. By
assumption, bj ∈ (0, 1) and hence also bRj ∈ (0, 1). Arguing analogously as in the
proof of Theorem 5.3.1, it is not difficult to show that F defined in (5.5.28) satisfies
the conditions of Lemma 5.5.7, thus

∥∥ū′R(bi)− ū′(bi)
∥∥+

∣∣k̄′R(bi)− k̄′(bi)
∣∣ . R−1/2+β,

for arbitrary small β > 0. Furthermore,

inf
v∈HR0

‖v − γbi‖Ḣ1 ≤ ‖TRγbi − γbi‖ . R−1/2+β,

with the first inequality following from the obvious fact that TRγbi ∈ HR0 and the
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second from the regularity result for γbi in Theorem 5.2.5.
Applying Lemma 5.5.6 we therefore obtain the desired result that

|k̄R(bRi )− k̄(bi)| . R−1+β.

5.6 Discussion

The results obtained here, in tandem with those of in Chapters 3 & 4, introduce
a mathematical framework in which a rigorous formulation and study of atomistic
models of cracks and their propagation is possible. In particular, we have shown how
the theory of atomistic modelling of defects developed in [19, 34, 50] can be combined
with classical results from bifurcation theory [20, 54] to study this problem, and a
key insight is the identification of the stress intensity factor as a suitable bifurcation
parameter which allows us to explore the energy landscape. Our analysis sets earlier
numerical work of [59, 60] into a rigorous framework, and provides a comprehensive
explanation as to why the bifurcation diagram is a snaking curve.

While further work is needed to extend our analytical results to more gen-
eral models (and particularly to the case of other crack modes), from a numerical
perspective several aspects of our theory are of universal applicability. We therefore
conclude by pointing out a series of interesting conclusions which arise from our
analysis.

Periodicity of the bifurcation diagram In an infinite lattice, shifting the crack
tip by one lattice spacing results in a physically identical configuration. Therefore,
it is reasonable to conjecture that BR in the limit as R → ∞ generates a bifurca-
tion diagram in which the critical points exist for values of the SIF k within a fixed
finite interval of admissible values. In Section 5.4 we have exploited the supercon-
vergence result in Theorem 5.3.2 to test this hypothesis numerically and the results
summarised in Figure 5.4 confirm this intuition, as the extrapolated limit values of
SIF as R→∞ for every second bifurcation point are numerically identical, occuring
at

k = 0.45903, k = 0.46234, k = 0.45905, k = 0.46231, k = 0.45905.

A translation invariance in the critical points further implies that, if we denote
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the centre of the CLE predictor by

xλ := (λ, 0) (5.6.1)

for some λ ∈ Z, and define Eλ : Ḣ1 × R→ R by

Eλ(ū, k) =
∑
m∈Λ

V (D̃ûk(m− xλ) + D̃ū(m))− V (D̃ûk(m− xλ)),

then assuming B(s) = (ūs, k̄s) ∈ Ḣ1 × R is a parametrisation as described in Sec-
tion 5.2, we naturally have

δuEλ(ūs(· − xλ), k̄s) = 0. (5.6.2)

We further notice for any s ∈ [0, 1] the total displacement ys = ûk̄s + ūs can be
rewritten as ys(m) = ûk̄s(m− xλ) + ws,λ(m), where λ ∈ Z and

ws,λ(m) :=
(
ûk̄s(m)− ûk̄s(m− xλ)

)
+ ūs(m).

Crucially,
|Dûk(l)−Dûk(l − xλ)| . |l|−3/2 =⇒ ws,λ ∈ Ḣ1 (5.6.3)

and for any choice of λ ∈ Z

δuEλ(ws,λ, k̄s) = δuE(ūs, k̄s) = 0. (5.6.4)

In other words, no matter which xλ we choose to centre the crack predictor ûk at,
the same configuration ys = ûk̄s + ūs always remains an equilibrium and ws,λ exactly
captures the resulting changes to the atomistic correction.

To be precise, let us fix some s ∈ [0, 1] thus giving us a pair B(s) = (ūs, k̄s),
let K := k̄s and further consider

IK := {s ∈ [0, 1] | k̄s = K}.

Equations (5.6.2) and (5.6.4) indicate that for any s′ ∈ IK for which ūs′ is a solution
of the same type as ūs (either stable, or unstable or a bifurcation point), we can find
a unique λ ∈ Z such that ūs′ = ws,λ.

In particular we note that the above strongly suggests that in some cases one
may be able to prove results about periodicity and boundedness in k of the bifurca-
tion diagram, which we hope to achieve in future work.
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Interplay between the stress intensity factor and the domain size and its
effect on lattice trapping. The tilt of bifurcation diagrams seen in Figure 5.3
indicates that the size of the domain heavily impacts the shape of the corresponding
solution curve. Notably, each successive bond-breaking event has a different interval
of admissible values of SIF associated to it and the corresponding unstable segments
are much shorter than stable ones for small domain sizes. The fact that the influence
of such finite-domain effects can still be observed for a fairly large R can be explained
by the very slow rate of convergence in Theorem 5.3.2.

In practice, one hopes to investigate crack propagation and associated energy
barriers for a fixed value of SIF and subsequently compare it against other admissible
choices of SIF to measure the strength of lattice trapping [45, 82], measured by the
relative height of the energy barrier. Our work indicates that such investigations
are particularly challenging due to the extent to which finite–size effects dominate,
an effect we observe to be strong even in the simple model considered here. Only a
very large choice of truncation radius R ensures that the resulting solution paths are
close to the periodic results one expects in the full lattice case. It may be possible
to overcome such difficulties by prescribing a more accurate predictor describing the
far–field behaviour, in line with the idea of development of solutions introduced in
[19]: this is a clear direction for future investigation.

Identification of the correct bifurcation parameter. It is interesting to note
that varying the intuitively natural bifurcation parameter λ introduced in (5.6.1)
to reflect the crack tip at which the continuum prediction is centred in fact fails to
capture the bifurcation phenomenon. This can be seen by considering Ẽ : Ḣ1×R→
R given by

Ẽ(v, λ) =
∑
m

V
(
D̃v̂λ(m) + D̃v(m)

)
− V

(
D̃v̂λ(m)

)
,

where v̂λ = ûK(· − xλ) for some fixed SIF K > 0. This fundamentally differs
from the energy defined in (2.5.1), as in that case we have linear dependence of the
displacement on k, D̃ûk(m) = kD̃û1(m), which in turn leads to a particular form
of derivatives with respect to k; in particular, this ensures we have quadratic fold
points. In Ẽ , however, the dependence is inside v̂λ, thus the crucial derivative with
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respect λ is given by

δ2
vλẼ(v, λ)[w, h] = h

∑
m

δ2V (D̃v̂λ(m) + D̃v(m))D̃fλ(m) · D̃w(m),

where fλ(m) = ∇ûK(m1 − λ,m2) · e1. In this case, as in (5.6.3), we can conclude
fλ ∈ Ḣ1. This implies that a fold point cannot occur, as that would require that
there exists γ ∈ Ḣ1 such that

〈δ2
vvẼ(v, λ)γ, v〉 =

∑
m

δ2V
(
D̃v̂λ(m) + D̃v(m)

)
D̃γ(m) · D̃w(m) = 0

for all w ∈ Ḣ1, which further implies that

δ2
vλẼ(v, λ)[γ, 1] =

∑
m

δ2V
(
D̃v̂λ(m) + D̃v(m)

)
D̃fλ(m) · D̃γ(m)

=
∑
m

δ2V
(
D̃v̂λ(m) + D̃v(m)

)
D̃γ(m) · D̃fλ(m) = 0,

since fλ ∈ Ḣ1. This breaches the defining property of a fold point given in Def-
inition 5.2.2; in fact, it is not possible to drive a bifurcation in this way precisely
because of the observation made in (5.6.3) and the resulting periodicity.

Parameter-driven analysis for other models and defects: An overarching
idea of this chapter is that a careful analysis of a crucial parameter involved in the
model can reveal the energy landscape of the problem, and this can be particularly
fruitful in the study of defect migration. In the case of a crack, using the SIF as a
driving parameter naturally generalises to more complex fracture models, though in
general there may be multiple SIFs.

It would be interesting to undertake future study to see whether such an
analysis is applicable more widely to other defects. In the particular case of disloca-
tions, nucleation and motion have been studied in the atomistic context in a number
of recent studies, including [3, 4, 25, 41, 49]. Since these defects are the carriers of
plastic deformation, the study of their mobility is important, and natural candidates
for the parameters in this case are the shear modulus and externally–applied stress
[56].
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Chapter 6

Conclusions

We conclude by summarising the main findings of this thesis and pointing to inter-
esting open problems that our analysis give rise to. We will also comment on an
on-going collaboration with James Kermode and Punit Patel from Warwick Centre
for Predictive Modelling (WCPM), in which the aim is to exploit our results in the
numerical study of more advanced vectorial models.

Chapter 2 was devoted to introducing the general atomistic formulation of
static crack problems. Firstly, we discussed the particularly relevant discrete kine-
matics setting, which in the case of the crack had to correctly take the inherent
loss of interaction into account. This was shown to be achieved by either manually
removing interaction bonds across the crack or encoding the loss of interaction into
the interatomic potential and strain. We further introduced and emphasised the
importance of the loading parameter k known as stress intensity factor.

Subsequently, in Chapter 3, we treated the small-loading regime, which refers
to the manual removal of interaction bonds across the crack coupled with requiring k
to be sufficiently small. In this setup we succeeded in proving existence, local unique-
ness and stability of solutions. Crucially, we also proved far-field decay estimates
of the resulting atomistic corrections and thus recovered a result about convergence
to the thermodynamic limit. We refer to the discussion in Section 3.6 for a more
detailed summary of this particular case.

The far-field decay estimate result was only possible due to the detailed study
of the associated lattice Green’s function in the anti-plane geometry conducted in
Chapter 4. We were able to show that there exists such a function and further es-
tablished its decay properties, by considering the problem as an instance of coupling
between continuum and atomistic descriptions. Furthermore, we employed a techni-
cally involved argument to prove the desired decay. Among other things, it included
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a construction of a locally isomorphic mapping of the problem onto a discrete mani-
fold corresponding to the complex square root, followed by a delicate boot-strapping
argument that saturates at the known rate of decay of the corresponding continuum
Green’s function.

We note that this result is of independent interest and in particular it gave
rise to an on-going study of near-crack-tip plasticity, which in our context refers to
movement of screw dislocations in the vicinity of a Mode III crack. A similar study
without the crack present was conducted in [49].

Finally, in Chapter 5, we focused on capturing atomistic crack propagation.
We reformulated our model by introducing interactions across the crack and encoding
the possibility of them being broken into the atomistic potential, proving that the
resulting model is still well-defined. However, this change put us into a setup rather
common in the atomistic study of defects - due to the complex nonconvex energy
landscape, we could no longer rigorously prove that a strongly stable solution exists,
but under the natural assumption that there is one (interpreted as an inherent feature
of the lattice and the potential in place), we employed the tools of bifurcation analysis
on Banach spaces to conduct a detailed study of crack propagation.

We identified the stress intensity factor k as a particularly suitable bifurcation
parameter and, motivated by the fact the continuum linearised elasticity solution
depends on k linearly, we provided strong evidence that the resulting bifurcation
diagram has to be a snaking curve, with the stability of solutions changing at each
fold point. This observation was further motivated by the fact that the anti-plane
setup naturally binds the crack to the horizontal axis. As a result we introduced some
natural structural assumptions on the bifurcation diagram and subsequently studied
cell size effects in finite-domain approximation to the problem on the infinite lattice.
In particular, we were able to prove sharp convergence rates of finite segments of the
bifurcation diagram and established an interesting superconvergence result for the
critical values of k at which bifurcation points occur. We refer to Section 5.6 for a
more detailed discussion about that particular part of the analysis.

The contributions of Chapters 3-5 constitute a rigorous framework in which
atomistic models of fracture can be formulated and studied. At present, it is not en-
tirely clear how to extend our results to vectorial models and cracks of different mode
due to the following two major obstacles. One is the ability to estimate the lattice
Green’s function in the crack geometry for interactions beyond nearest-neighbours.
At present we rely on a delicate construction involving a discrete manifold - this
is conceptually ill-suited for more general setups. The second, potentially far more
persistent problem is the phenomenon of surface effects induced by the crack surface,
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with atoms near prone to assuming a different structure altogether.
However, while these complications require further fundamental work to be

overcome on a rigorous level, our analysis obtained for a scalar Mode III crack model
is of universal applicability on a heuristic level. In particular the insights about the
decay of atomistic corrections, the crucial role of the stress intensity factor and
the resulting pseudo-arclength continuation scheme all persist for vectorial models.
This is the subject of the aforementioned on-going work with James Kermode and
Punit Patel fromWCPM, who are interested in studying energy barriers for atomistic
models of Mode II (in-plane) fracture. With our numerical scheme for tracing energy
landscape as one varies the stress intensity factor, we were able to find a saddle point
in-between two stable solutions, which precisely corresponds to the energetic cost of
propagation. In that sense, we were also able to precisely capture the phenomenon
of lattice trapping, which postulates that the lattice can keep the crack trapped
for a range of values of the stress intensity factor. With this tool one can carry
out a rigorous qualitative analysis of energy barriers and in particular our work
with regards cell-size effects also warns against the possibility of strong numerical
artefacts, should one choose the computational domain not large enough. As already
noted, this is substantially more challenging in vectorial models and notably has to
be combined with the idea of development of solutions discussed in [19] to create
a convergent numerical scheme. This is an on-going collaboration and we refer to
Figures 6.1 & 6.2 for visualisation.
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Figure 6.1: Atomistic crack propagation captured for a vectorial Mode II fracture
model.

Figure 6.2: The analysis of energy barriers in a vectorial Mode II fracture model.
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